Properties

Label 1440.5010.12.p1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{30}:C_4$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $abc^{25}, b^{6}, b^{4}c^{40}, c^{30}, c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{30}.(C_4\times D_6)$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times S_3\times D_5).C_2^5$
$\operatorname{Aut}(H)$ $D_6\times F_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$D_6\times F_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_{15}:C_4$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{60}:C_4$
Normal closure:$C_2\times C_3^2:F_5$
Core:$D_{10}$
Minimal over-subgroups:$C_2\times C_3^2:F_5$$C_{60}:C_4$
Maximal under-subgroups:$C_3\times D_{10}$$C_{15}:C_4$$C_{15}:C_4$$C_2\times F_5$$C_6:C_4$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$D_{10}.S_3^2$