Subgroup ($H$) information
| Description: | $C_2$ |
| Order: | \(2\) |
| Index: | \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(2\) |
| Generators: |
$b^{6}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, simple, and rational.
Ambient group ($G$) information
| Description: | $C_3\times C_{12}:D_{20}$ |
| Order: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_{60}:D_6$ |
| Order: | \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Automorphism Group: | $C_{15}:(C_2^2\times C_4\times C_2\times D_4)$ |
| Outer Automorphisms: | $C_2^3\times C_4$, of order \(32\)\(\medspace = 2^{5} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{15}:(C_2^5.C_2^6.C_2)$ |
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
| $\operatorname{res}(S)$ | $C_1$, of order $1$ |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(30720\)\(\medspace = 2^{11} \cdot 3 \cdot 5 \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_3\times C_{12}:D_{20}$ | |||||||
| Normalizer: | $C_3\times C_{12}:D_{20}$ | |||||||
| Minimal over-subgroups: | $C_{10}$ | $C_6$ | $C_6$ | $C_6$ | $C_2^2$ | $C_2^2$ | $C_2^2$ | $C_4$ |
| Maximal under-subgroups: | $C_1$ |
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $0$ |
| Projective image | $C_{60}:D_6$ |