Properties

Label 1400.108.7.a1
Order $ 2^{3} \cdot 5^{2} $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:D_{20}$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(7\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a, c^{70}, b, c^{105}, c^{84}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_5:D_{140}$
Order: \(1400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{70}).C_6.C_2^4.S_5$
$\operatorname{Aut}(H)$ $C_{10}^2:(C_2\times \GL(2,5))$, of order \(96000\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{3} \)
$\operatorname{res}(S)$$C_{10}^2:(C_2\times \GL(2,5))$, of order \(96000\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_5:D_{10}$, of order \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_5:D_{20}$
Normal closure:$C_5:D_{140}$
Core:$C_5\times C_{20}$
Minimal over-subgroups:$C_5:D_{140}$
Maximal under-subgroups:$C_5\times C_{20}$$C_5:D_{10}$$D_{20}$

Other information

Number of subgroups in this autjugacy class$7$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_5:D_{70}$