Properties

Label 1344.3828.16.d1.a1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_{14}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $c^{3}, c^{2}, d^{4}, d^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{84}.(C_2\times D_4)$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{42}\times D_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_3\times D_4$
Normalizer:$C_{84}.C_2^3$
Normal closure:$C_3\times D_{28}$
Core:$C_{42}$
Minimal over-subgroups:$C_3\times D_{28}$$C_{21}:D_4$$C_{21}:D_4$$C_{21}:D_4$$C_6\times D_{14}$$C_6\times D_{14}$$C_{12}\times D_7$
Maximal under-subgroups:$C_{42}$$C_3\times D_7$$D_{14}$$C_2\times C_6$
Autjugate subgroups:1344.3828.16.d1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$(C_2\times C_{42}):D_4$