Properties

Label 1344.2944.6.g1.a1
Order $ 2^{5} \cdot 7 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{112}:C_2$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Generators: $ab, c^{16}, c^{42}, c^{28}, c^{7}, c^{56}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{24}:D_{14}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{84}.(C_2\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $D_8:C_4\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$D_8:C_4\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_7\times D_8$, of order \(224\)\(\medspace = 2^{5} \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{16}:D_{14}$
Normal closure:$C_{21}:\SD_{32}$
Core:$D_{56}$
Minimal over-subgroups:$C_{21}:\SD_{32}$$C_{16}:D_{14}$
Maximal under-subgroups:$D_{56}$$C_7:Q_{16}$$C_{112}$$\SD_{32}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$D_{12}:D_{14}$