Properties

Label 1327104.eb.2592.A
Order $ 2^{9} $
Index $ 2^{5} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^9$
Order: \(512\)\(\medspace = 2^{9} \)
Index: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(3,4)(5,6)(15,16)(17,18), (1,2)(5,6)(9,10)(11,12), (1,2)(5,6)(7,8)(9,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, abelian (hence metabelian and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^9.C_3:S_3^3:C_4$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3:S_3^3:C_4$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_3\wr D_4$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_3^4.C_2^4.C_2^4$
$\operatorname{Aut}(H)$ $\GL(9,2)$
$W$$D_5^3.C_2^2$, of order \(4000\)\(\medspace = 2^{5} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_2^9$
Normalizer:$C_2^9.C_3:S_3^3:C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^2:\POPlus(4,3).D_4$