Properties

Label 13200.u.66.a1.a1
Order $ 2^{3} \cdot 5^{2} $
Index $ 2 \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}.D_{10}$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 8 & 7 & 7 & 3 \\ 2 & 2 & 9 & 7 \\ 5 & 9 & 5 & 4 \\ 10 & 5 & 9 & 10 \end{array}\right), \left(\begin{array}{rrrr} 7 & 4 & 7 & 0 \\ 7 & 4 & 0 & 4 \\ 3 & 0 & 4 & 4 \\ 0 & 8 & 7 & 7 \end{array}\right), \left(\begin{array}{rrrr} 0 & 3 & 6 & 8 \\ 10 & 3 & 7 & 1 \\ 4 & 3 & 2 & 2 \\ 6 & 4 & 6 & 6 \end{array}\right), \left(\begin{array}{rrrr} 3 & 6 & 9 & 3 \\ 3 & 1 & 2 & 2 \\ 6 & 5 & 8 & 5 \\ 8 & 2 & 9 & 0 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $\SL(2,11):D_5$
Order: \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \PSL(2,11).C_2\times F_5$
$\operatorname{Aut}(H)$ $F_5^2:D_4$, of order \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \)
$W$$D_5^2$, of order \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{10}.D_{10}$
Normal closure:$\SL(2,11):D_5$
Core:$C_5:C_4$
Minimal over-subgroups:$\SL(2,5):D_5$$\SL(2,5):D_5$
Maximal under-subgroups:$C_5:D_{10}$$C_5:C_{20}$$C_5:C_{20}$$C_4\times D_5$$C_4\times D_5$

Other information

Number of subgroups in this conjugacy class$66$
Möbius function$1$
Projective image not computed