Properties

Label 13200.u.330.a1.a1
Order $ 2^{3} \cdot 5 $
Index $ 2 \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times D_5$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 9 & 4 & 6 & 9 \\ 5 & 4 & 1 & 6 \\ 10 & 2 & 7 & 7 \\ 4 & 10 & 6 & 2 \end{array}\right), \left(\begin{array}{rrrr} 7 & 4 & 7 & 0 \\ 7 & 4 & 0 & 4 \\ 3 & 0 & 4 & 4 \\ 0 & 8 & 7 & 7 \end{array}\right), \left(\begin{array}{rrrr} 5 & 1 & 8 & 7 \\ 5 & 10 & 9 & 8 \\ 0 & 0 & 5 & 10 \\ 0 & 0 & 6 & 10 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $\SL(2,11):D_5$
Order: \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \PSL(2,11).C_2\times F_5$
$\operatorname{Aut}(H)$ $C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_4\times D_5$
Normal closure:$\SL(2,11):D_5$
Core:$C_2$
Minimal over-subgroups:$\SL(2,5):C_2$$\SL(2,5):C_2$$C_{10}.D_{10}$
Maximal under-subgroups:$D_{10}$$C_{20}$$C_5:C_4$$C_2\times C_4$

Other information

Number of subgroups in this conjugacy class$330$
Möbius function$-1$
Projective image not computed