Properties

Label 1310720.ty.16._.HS
Order $ 2^{14} \cdot 5 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5.C_2^8:C_{10}$
Order: \(81920\)\(\medspace = 2^{14} \cdot 5 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(1,6,2,5)(3,7,4,8)(9,15,10,16)(11,14,12,13)(27,28)(29,30)(33,34)(39,40) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^6.C_2^{12}:C_5$
Order: \(1310720\)\(\medspace = 2^{18} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$not computed
$\operatorname{Aut}(H)$ $D_6^2:S_4$, of order \(10485760\)\(\medspace = 2^{21} \cdot 5 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2^5.C_2^8:C_{10}$
Normal closure:$C_2^6.C_2^{12}:C_5$
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$16$
Möbius function not computed
Projective image not computed