Subgroup ($H$) information
| Description: | $C_2$ |
| Order: | \(2\) |
| Index: | \(64\)\(\medspace = 2^{6} \) |
| Exponent: | \(2\) |
| Generators: |
$a$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.
Ambient group ($G$) information
| Description: | $C_2^5\times C_4$ |
| Order: | \(128\)\(\medspace = 2^{7} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Quotient group ($Q$) structure
| Description: | $C_2^4\times C_4$ |
| Order: | \(64\)\(\medspace = 2^{6} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2^5.C_2^4.A_8$, of order \(10321920\)\(\medspace = 2^{15} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Outer Automorphisms: | $C_2^5.C_2^4.A_8$, of order \(10321920\)\(\medspace = 2^{15} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^6.C_2^5.\GL(5,2)$, of order \(20478689280\)\(\medspace = 2^{21} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \) |
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
| $\operatorname{res}(S)$ | $C_1$, of order $1$ |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(330301440\)\(\medspace = 2^{20} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_2^5\times C_4$ | |
| Normalizer: | $C_2^5\times C_4$ | |
| Complements: | $C_2^4\times C_4$ | |
| Minimal over-subgroups: | $C_2^2$ | $C_2^2$ |
| Maximal under-subgroups: | $C_1$ |
Other information
| Number of subgroups in this autjugacy class | $62$ |
| Number of conjugacy classes in this autjugacy class | $62$ |
| Möbius function | $0$ |
| Projective image | $C_2^4\times C_4$ |