Properties

Label 128.2319.64.a1
Order $ 2 $
Index $ 2^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(2\)
Generators: $a$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_2^5\times C_4$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Quotient group ($Q$) structure

Description: $C_2^4\times C_4$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^5.C_2^4.A_8$, of order \(10321920\)\(\medspace = 2^{15} \cdot 3^{2} \cdot 5 \cdot 7 \)
Outer Automorphisms: $C_2^5.C_2^4.A_8$, of order \(10321920\)\(\medspace = 2^{15} \cdot 3^{2} \cdot 5 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_2^5.\GL(5,2)$, of order \(20478689280\)\(\medspace = 2^{21} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(330301440\)\(\medspace = 2^{20} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^5\times C_4$
Normalizer:$C_2^5\times C_4$
Complements:$C_2^4\times C_4$
Minimal over-subgroups:$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$62$
Number of conjugacy classes in this autjugacy class$62$
Möbius function$0$
Projective image$C_2^4\times C_4$