Properties

Label 126000.a.175.a1.c1
Order $ 2^{4} \cdot 3^{2} \cdot 5 $
Index $ 5^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_6.C_2$
Order: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Index: \(175\)\(\medspace = 5^{2} \cdot 7 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\left[ \left(\begin{array}{rrr} 7 & 9 & 8 \\ 10 & 8 & 13 \\ 14 & 18 & 3 \end{array}\right) \right], \left[ \left(\begin{array}{rrr} 14 & 7 & 2 \\ 20 & 22 & 6 \\ 8 & 23 & 19 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $1$

The subgroup is maximal, nonabelian, almost simple, and nonsolvable.

Ambient group ($G$) information

Description: $\PSU(3,5)$
Order: \(126000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGammaU(3,5)$, of order \(756000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
$W$$A_6.C_2$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$A_6.C_2$
Normal closure:$\PSU(3,5)$
Core:$C_1$
Minimal over-subgroups:$\PSU(3,5)$
Maximal under-subgroups:$A_6$$\PSU(3,2)$$F_5$$\SD_{16}$
Autjugate subgroups:126000.a.175.a1.a1126000.a.175.a1.b1

Other information

Number of subgroups in this conjugacy class$175$
Möbius function$-1$
Projective image$\PSU(3,5)$