Properties

Label 1200.481.300.a1.a1
Order $ 2^{2} $
Index $ 2^{2} \cdot 3 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 1 & 4 \\ 1 & 4 & 0 & 4 \\ 4 & 2 & 1 & 1 \\ 4 & 1 & 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $\SL(2,5):D_5$
Order: \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times F_5\times S_5$, of order \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$D_4:C_2$
Normal closure:$\SL(2,5):D_5$
Core:$C_2$
Minimal over-subgroups:$D_{10}$$D_{10}$$D_{10}$$D_{10}$$D_6$$C_2\times C_4$$D_4$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of subgroups in this conjugacy class$75$
Möbius function$0$
Projective image$D_5\times A_5$