Properties

Label 1200.481.120.a1.a1
Order $ 2 \cdot 5 $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 4 & 2 & 4 & 2 \\ 2 & 2 & 0 & 3 \\ 1 & 3 & 1 & 4 \\ 4 & 0 & 4 & 2 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, and cyclic (hence abelian, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\SL(2,5):D_5$
Order: \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2\times A_5$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $1$

The quotient is nonabelian, an A-group, and nonsolvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times F_5\times S_5$, of order \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_5\times \SL(2,5)$
Normalizer:$\SL(2,5):D_5$
Minimal over-subgroups:$C_5\times C_{10}$$C_{30}$$C_5:C_4$$D_{10}$$C_{20}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Möbius function$60$
Projective image$D_5\times A_5$