Subgroup ($H$) information
| Description: | $C_{10}$ |
| Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Index: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rrrr}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right), \left(\begin{array}{rrrr}
4 & 2 & 4 & 2 \\
2 & 2 & 0 & 3 \\
1 & 3 & 1 & 4 \\
4 & 0 & 4 & 2
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, and cyclic (hence abelian, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $\SL(2,5):D_5$ |
| Order: | \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
| Description: | $C_2\times A_5$ |
| Order: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Automorphism Group: | $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Nilpotency class: | $-1$ |
| Derived length: | $1$ |
The quotient is nonabelian, an A-group, and nonsolvable.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times F_5\times S_5$, of order \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_5\times \SL(2,5)$ | ||||
| Normalizer: | $\SL(2,5):D_5$ | ||||
| Minimal over-subgroups: | $C_5\times C_{10}$ | $C_{30}$ | $C_5:C_4$ | $D_{10}$ | $C_{20}$ |
| Maximal under-subgroups: | $C_5$ | $C_2$ |
Other information
| Möbius function | $60$ |
| Projective image | $D_5\times A_5$ |