Properties

Label 1200.481.12.c1.a1
Order $ 2^{2} \cdot 5^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:C_{20}$
Order: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 2 & 2 & 3 & 4 \\ 1 & 2 & 2 & 2 \\ 1 & 1 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 0 & 3 & 4 \\ 3 & 4 & 4 & 4 \\ 4 & 3 & 1 & 4 \end{array}\right), \left(\begin{array}{rrrr} 4 & 2 & 4 & 2 \\ 2 & 2 & 0 & 3 \\ 1 & 3 & 1 & 4 \\ 4 & 0 & 4 & 2 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $\SL(2,5):D_5$
Order: \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times F_5\times S_5$, of order \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_{10}:C_4^2$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\operatorname{res}(S)$$C_4\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{10}.D_{10}$
Normal closure:$C_5\times \SL(2,5)$
Core:$C_{10}$
Minimal over-subgroups:$C_5\times \SL(2,5)$$C_{10}.D_{10}$
Maximal under-subgroups:$C_5\times C_{10}$$C_{20}$$C_5:C_4$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$1$
Projective image$D_5\times A_5$