Properties

Label 1200.206.3.a1
Order $ 2^{4} \cdot 5^{2} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_{50}$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Index: \(3\)
Exponent: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Generators: $a, d^{30}, c, d^{75}, b, d^{96}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{150}:C_2^3$
Order: \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
Exponent: \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times D_{25}.C_{10}\times C_2^3.\PSL(2,7)$
$\operatorname{Aut}(H)$ $D_{25}.C_{10}\times C_2^3.\PSL(2,7)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(672000\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{3} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{25}$, of order \(50\)\(\medspace = 2 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_{150}:C_2^3$
Complements:$C_3$
Minimal over-subgroups:$C_{150}:C_2^3$
Maximal under-subgroups:$C_2\times D_{50}$$C_2^2\times C_{50}$$C_2^2\times D_{10}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_3\times D_{25}$