Properties

Label 115200.dc.12._.A
Order $ 2^{7} \cdot 3 \cdot 5^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times F_5\times S_5$
Order: \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(2,4)(3,5), (1,11,13,12,14)(2,4)(6,7)(8,10,9), (1,12)(2,4)(11,13), (1,13,12,11), (2,4), (1,12,14,11)(2,4)(6,10), (1,12,11,14,13)(2,4)(3,5)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $S_5^2\times D_4$
Order: \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_4).A_5^2.D_4$
$\operatorname{Aut}(H)$ $F_5.S_5\times C_2^2:S_4$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$6$
Möbius function not computed
Projective image not computed