Properties

Label 115200.d.72.A
Order $ 2^{6} \cdot 5^{2} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}^2.C_2^2$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(1,9)(2,6)(3,8)(4,5)(7,10)(11,14,13,12), (11,14)(12,13), (11,12)(13,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $S_5^2:D_4$
Order: \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $(C_2^2\times D_{10}^2).D_4$, of order \(12800\)\(\medspace = 2^{9} \cdot 5^{2} \)
$W$$F_5^2:C_2^2$, of order \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$F_5^2:D_4$
Normal closure:$A_5^2:(C_2\times D_4)$
Core:$C_2^2$
Minimal over-subgroups:$A_5^2:(C_2\times D_4)$$F_5^2:D_4$
Maximal under-subgroups:$D_{10}\wr C_2$$D_{10}^2.C_2$$C_{10}^2:(C_2\times C_4)$$C_{10}^2:D_4$$C_{10}^2:Q_8$$D_5^2.D_4$$D_5^2.C_2^3$$D_5^2.(C_2\times C_4)$$C_5^2:(C_4\times D_4)$$D_5^2:D_4$$D_5^2:Q_8$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_5^2:C_2^2$