Properties

Label 115200.d.576.P
Order $ 2^{3} \cdot 5^{2} $
Index $ 2^{6} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}:F_5$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(1,7,6,5,8)(11,13)(12,14), (1,6)(2,9)(3,10)(5,8)(11,13)(12,14), (2,9,3,4,10)(11,13)(12,14), (1,2,6,9)(3,5,10,8)(4,7)(12,14), (11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $S_5^2:D_4$
Order: \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $F_5^2:C_2^2$, of order \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
$W$$D_5^2.C_2^3$, of order \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{10}^2.C_2^2$
Normal closure:$A_5^2:C_2^3$
Core:$C_2$
Minimal over-subgroups:$C_{10}^2:C_4$$D_5^2:C_2^2$$D_5^2:C_4$$D_{10}:F_5$$C_{10}.(C_2\times F_5)$$C_2\times C_5^2:Q_8$$(C_5\times C_{10}).Q_8$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_5^2:C_2^2$