Subgroup ($H$) information
| Description: | $C_2\times D_6^2$ |
| Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Index: | \(400\)\(\medspace = 2^{4} \cdot 5^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(11,14)(12,13), (11,12)(13,14), (5,8,6)(11,12)(13,14), (1,7)(11,14)(12,13), (2,10,4)(5,6)(11,13)(12,14), (3,9)(4,10)(5,8), (6,8)(11,12)(13,14)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Ambient group ($G$) information
| Description: | $S_5^2:D_4$ |
| Order: | \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, nonsolvable, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $C_3:S_3.C_2^5.C_2^3.\PSL(2,7)$ |
| $W$ | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
| Centralizer: | not computed | ||
| Normalizer: | $C_2^2\times D_6^2$ | ||
| Normal closure: | $C_2^2\times S_5^2$ | ||
| Core: | $C_2^2$ | ||
| Minimal over-subgroups: | $\GL(2,4):C_2^4$ | $\GL(2,4):C_2^4$ | $C_2^2\times D_6^2$ |
Other information
| Number of subgroups in this autjugacy class | $200$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $S_5^2:C_2^2$ |