Properties

Label 115200.d.400.G
Order $ 2^{5} \cdot 3^{2} $
Index $ 2^{4} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_6^2$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(11,14)(12,13), (11,12)(13,14), (5,8,6)(11,12)(13,14), (1,7)(11,14)(12,13), (2,10,4)(5,6)(11,13)(12,14), (3,9)(4,10)(5,8), (6,8)(11,12)(13,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $S_5^2:D_4$
Order: \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_3:S_3.C_2^5.C_2^3.\PSL(2,7)$
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^2\times D_6^2$
Normal closure:$C_2^2\times S_5^2$
Core:$C_2^2$
Minimal over-subgroups:$\GL(2,4):C_2^4$$\GL(2,4):C_2^4$$C_2^2\times D_6^2$

Other information

Number of subgroups in this autjugacy class$200$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_5^2:C_2^2$