Properties

Label 115200.d.400.DA
Order $ 2^{5} \cdot 3^{2} $
Index $ 2^{4} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6\times S_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(11,14)(12,13), (2,4,3)(5,6,8), (2,4)(3,9), (2,9)(3,4), (2,3,9)(11,14)(12,13), (3,4)(5,6)(11,13)(12,14), (1,7)(2,3)(11,14)(12,13)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $S_5^2:D_4$
Order: \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2^2:D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$W$$S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^3:D_6^2$
Normal closure:$A_5^2:C_2^3$
Core:$C_1$
Minimal over-subgroups:$D_6\times S_5$$C_2^2:D_6^2$$C_2^2:D_6^2$

Other information

Number of subgroups in this autjugacy class$400$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$S_5^2:D_4$