Properties

Label 115200.d.288.Z
Order $ 2^{4} \cdot 5^{2} $
Index $ 2^{5} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_5^2:Q_8$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(11,13)(12,14), (1,6,7,5,8)(11,13)(12,14), (1,9,7,10)(2,6)(3,5,4,8)(12,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $S_5^2:D_4$
Order: \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_{10}^2:\Unitary(2,3)$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$W$$F_5^2:C_2^2$, of order \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$F_5^2:D_4$
Normal closure:$A_5^2:C_2^3$
Core:$C_2$
Minimal over-subgroups:$C_{10}^2:Q_8$$D_5^2.C_2^3$$D_5^2:Q_8$
Maximal under-subgroups:$C_{10}:F_5$$C_{10}:F_5$$C_5^2:Q_8$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_5^2:C_2^2$