Subgroup ($H$) information
| Description: | $D_{10}^2$ |
| Order: | \(400\)\(\medspace = 2^{4} \cdot 5^{2} \) |
| Index: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$\langle(2,4)(9,10), (11,14)(12,13), (11,12)(13,14), (2,3,4,10,9)(11,14)(12,13), (2,3)(4,9)(5,8)(6,7)(11,14)(12,13), (1,7,5,8,6)(11,14)(12,13)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $S_5^2:D_4$ |
| Order: | \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, nonsolvable, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $D_{10}^2.(D_4\times S_4)$, of order \(76800\)\(\medspace = 2^{10} \cdot 3 \cdot 5^{2} \) |
| $W$ | $F_5\wr C_2$, of order \(800\)\(\medspace = 2^{5} \cdot 5^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $36$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $S_5^2:C_2^2$ |