Properties

Label 115200.d.240.J
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 2^{4} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_6\times F_5$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(11,14)(12,13), (11,12)(13,14), (1,5)(6,8), (2,4,10,9,3)(11,12)(13,14), (2,10,3,4,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $S_5^2:D_4$
Order: \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2^4:S_3^2\times F_5$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
$W$$S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^2\times D_6\times F_5$
Normal closure:$C_2^2\times S_5^2$
Core:$C_2^2$
Minimal over-subgroups:$C_2^2\times F_5\times A_5$$\GL(2,4):C_2^4$$C_2^2\times D_6\times F_5$
Maximal under-subgroups:$D_{10}:C_{12}$$D_{10}.D_6$$D_6\times D_{10}$$D_6\times F_5$$D_6\times F_5$$D_6\times F_5$$D_6\times F_5$$C_2^3\times F_5$

Other information

Number of subgroups in this autjugacy class$120$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_5^2:C_2^2$