Properties

Label 115200.d.120.C
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_6\times F_5$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(11,14)(12,13), (5,6,7,8), (5,7)(6,8), (11,12)(13,14), (3,4)(11,13)(12,14), (1,6,5,7,8), (3,4,10)(11,12)(13,14), (2,9)(11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $S_5^2:D_4$
Order: \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_3\times C_2^6.\PSL(2,7)\times F_5$
$W$$S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^2\times D_6\times F_5$
Normal closure:$C_2^2\times S_5^2$
Core:$C_2^2$
Minimal over-subgroups:$C_2^2\times F_5\times S_5$$\GL(2,4):C_2^5$
Maximal under-subgroups:$C_2^2\times C_6\times F_5$$C_2^2\times C_{30}:C_4$$C_2\times D_6\times F_5$$C_2\times D_6\times F_5$$C_{15}:C_2^5$$C_2\times D_6\times F_5$$C_2\times D_6\times F_5$$C_2\times D_6\times F_5$$C_2\times D_6\times F_5$$C_2\times D_6\times F_5$$C_2\times D_6\times F_5$$C_2\times D_6\times F_5$$C_2\times D_6\times F_5$$C_2^4\times F_5$$C_{12}:C_2^4$

Other information

Number of subgroups in this autjugacy class$120$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_5^2:C_2^2$