Subgroup ($H$) information
| Description: | $A_4\times C_2^4$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Index: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(10,11)(14,15), (2,3)(4,5)(6,13,9,7,12,8)(10,11)(14,15), (8,9)(12,13), (8,9), (6,7)(8,9), (6,8,13)(7,9,12), (2,5)(3,4)(6,7)(8,9)(10,11)(12,13)(14,15)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_2^5:C_6\times A_5$ |
| Order: | \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_5\times C_2\wr C_2^2\times S_4$ |
| $\operatorname{Aut}(H)$ | $S_4\times A_8$, of order \(483840\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 5 \cdot 7 \) |
| $W$ | $C_3\times A_4$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $5$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_2^4:\GL(2,4)$ |