Properties

Label 11520.ec.288.bl1
Order $ 2^{3} \cdot 5 $
Index $ 2^{5} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{10}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(1,4,5,3,2), (10,11)(14,15), (6,7)(8,9), (1,4)(2,5)(8,9)(12,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^5:C_6\times A_5$
Order: \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times C_2\wr C_2^2\times S_4$
$\operatorname{Aut}(H)$ $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$D_4\times C_2^3$
Normalizer:$C_{20}:C_2^5$
Normal closure:$C_2^3\times A_5$
Core:$C_2$
Minimal over-subgroups:$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_4\times D_{10}$$C_4\times D_{10}$$C_2^2\times D_{10}$
Maximal under-subgroups:$C_2\times C_{10}$$D_{10}$$D_{10}$$D_{10}$$D_{10}$$C_2^3$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^5:\GL(2,4)$