Properties

Label 11520.ec.240.eh1
Order $ 2^{4} \cdot 3 $
Index $ 2^{4} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_6$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(8,9)(14,15), (3,5,4)(6,7)(8,9)(10,11)(14,15), (10,11)(14,15), (1,2)(4,5)(6,7)(10,11)(14,15), (6,7)(8,9)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_2^5:C_6\times A_5$
Order: \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times C_2\wr C_2^2\times S_4$
$\operatorname{Aut}(H)$ $S_3\times C_2^3:\GL(3,2)$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^5$
Normalizer:$C_{12}:C_2^5$
Normal closure:$D_4\times C_2^3\times A_5$
Core:$C_2$
Minimal over-subgroups:$C_2^3\times D_6$$C_2^3\times D_6$$D_4\times D_6$$C_2^3\times D_6$$D_4\times D_6$
Maximal under-subgroups:$C_2^2\times C_6$$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2^4$

Other information

Number of subgroups in this autjugacy class$120$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$C_2^5:\GL(2,4)$