Subgroup ($H$) information
| Description: | $C_4:C_6^2$ |
| Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$b^{2}, c^{6}, d^{4}, c^{3}d^{6}, d^{6}, c^{4}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is the commutator subgroup (hence characteristic and normal), nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $C_{12}^2:D_4$ |
| Order: | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_2^3$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Outer Automorphisms: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.C_2^6.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_2\wr C_2^2\times \GL(2,3)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| $W$ | $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \) |
Related subgroups
Other information
| Möbius function | $-8$ |
| Projective image | $(C_6\times C_{12}):D_4$ |