Properties

Label 1152.32531.4.m1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}\wr C_2$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, c^{2}, d^{6}, d^{3}, d^{4}, b^{4}, cd^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{12}^2:D_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^4.C_2^5.C_2^2)$
$\operatorname{Aut}(H)$ $C_{12}:C_2^5$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$C_{12}:C_2^5$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_{12}^2:C_2^2$
Normal closure:$C_{12}^2:C_2^2$
Core:$C_{12}^2$
Minimal over-subgroups:$C_{12}^2:C_2^2$
Maximal under-subgroups:$C_{12}^2$$D_{12}:C_6$$C_{12}.C_{12}$$D_4:C_{12}$$D_{12}:C_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$(C_2\times C_{12}):D_4$