Properties

Label 1152.155817.6.j1.a1
Order $ 2^{6} \cdot 3 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:S_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $ac^{9}, d, c^{8}, b, e^{3}, c^{18}, c^{12}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_{24}:S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{12}\times A_4).C_2^6$
$\operatorname{Aut}(H)$ $\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_8\times S_4$
Normal closure:$D_{12}:S_4$
Core:$C_4:S_4$
Minimal over-subgroups:$D_{12}:S_4$$D_8\times S_4$
Maximal under-subgroups:$C_4:S_4$$D_4\times A_4$$A_4:C_8$$D_4:D_4$$C_3:D_8$
Autjugate subgroups:1152.155817.6.j1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$D_{12}:S_4$