Properties

Label 1120.784.80.c1.b1
Order $ 2 \cdot 7 $
Index $ 2^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $ad^{7}, d^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_7\times C_2^3.D_{10}$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^6.C_2^4)$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(640\)\(\medspace = 2^{7} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{70}.C_2^3$
Normalizer:$C_{70}.C_2^3$
Normal closure:$C_2\times C_{14}$
Core:$C_7$
Minimal over-subgroups:$C_{70}$$C_2\times C_{14}$$C_2\times C_{14}$$C_2\times C_{14}$
Maximal under-subgroups:$C_7$$C_2$
Autjugate subgroups:1120.784.80.c1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_2^3.D_{10}$