Subgroup ($H$) information
| Description: | $C_2\times C_{10}$ |
| Order: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Index: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$b^{2}, c^{2}, d^{7}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the commutator subgroup (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_7\times C_2^3.D_{10}$ |
| Order: | \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \) |
| Exponent: | \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2\times C_{14}$ |
| Order: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Automorphism Group: | $C_6\times \GL(3,2)$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \) |
| Outer Automorphisms: | $C_6\times \GL(3,2)$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{15}:(C_2^6.C_2^4)$ |
| $\operatorname{Aut}(H)$ | $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Möbius function | $8$ |
| Projective image | $C_{14}\times D_{10}$ |