Properties

Label 1120.784.2.c1.a1
Order $ 2^{4} \cdot 5 \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{70}.D_4$
Order: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Index: \(2\)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $a, c^{2}, d^{2}, b^{2}, bc, d^{7}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_7\times C_2^3.D_{10}$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^6.C_2^4)$
$\operatorname{Aut}(H)$ $C_{15}:(C_2\times C_4\times C_2^2\wr C_2)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times D_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$C_7\times C_2^3.D_{10}$
Complements:$C_2$
Minimal over-subgroups:$C_7\times C_2^3.D_{10}$
Maximal under-subgroups:$C_2^2\times C_{70}$$C_{10}:C_{28}$$C_{10}:C_{28}$$C_2^2:C_{28}$$C_{10}.D_4$

Other information

Möbius function$-1$
Projective image$C_2\times D_{10}$