Properties

Label 1120.784.14.e1.b1
Order $ 2^{4} \cdot 5 $
Index $ 2 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}.D_4$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ac^{5}, b^{2}, d^{7}, bc, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_7\times C_2^3.D_{10}$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^6.C_2^4)$
$\operatorname{Aut}(H)$ $C_2^4\times F_5$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\operatorname{res}(S)$$C_2^4\times F_5$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2\times D_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$C_7\times C_2^3.D_{10}$
Complements:$C_{14}$ $C_{14}$ $C_{14}$
Minimal over-subgroups:$C_{70}.D_4$$C_2^3.D_{10}$
Maximal under-subgroups:$C_2\times C_{20}$$C_{10}:C_4$$C_{10}:C_4$$C_4:C_4$
Autjugate subgroups:1120.784.14.e1.a1

Other information

Möbius function$1$
Projective image$C_{14}\times D_{10}$