Properties

Label 1120.784.10.e1.a1
Order $ 2^{4} \cdot 7 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4:C_{28}$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $ac^{5}, d^{2}, b^{2}, b, d^{7}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_7\times C_2^3.D_{10}$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^6.C_2^4)$
$\operatorname{Aut}(H)$ $C_2^5:C_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^4\times C_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$(C_2^2\times C_{28}):C_2$
Normal closure:$C_{70}.D_4$
Core:$C_2\times C_{28}$
Minimal over-subgroups:$C_{70}.D_4$$(C_2^2\times C_{28}):C_2$
Maximal under-subgroups:$C_2\times C_{28}$$C_2\times C_{28}$$C_2\times C_{28}$$C_4:C_4$
Autjugate subgroups:1120.784.10.e1.b1

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$C_2\times D_{10}$