Properties

Label 1120.703.28.e1
Order $ 2^{3} \cdot 5 $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_4$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a, d^{84}, c, bcd^{55}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_5\times D_{14}:D_4$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^4\times C_7:C_3).C_2^6$
$\operatorname{Aut}(H)$ $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$D_4\times C_{10}$
Normal closure:$C_{70}:D_4$
Core:$C_{10}$
Minimal over-subgroups:$C_{35}:D_4$$D_4\times C_{10}$
Maximal under-subgroups:$C_2\times C_{10}$$C_2\times C_{10}$$C_{20}$$D_4$

Other information

Number of subgroups in this autjugacy class$56$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$D_4\times D_7$