Properties

Label 1080.172.5.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.C_6^2$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(5\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}, b^{4}, b^{6}, b^{3}, a^{2}, c^{10}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{30}.C_6^2$
Order: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times \AGL(2,3)\times F_5$
$\operatorname{Aut}(H)$ $C_2^4.\SL(3,3)$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_6^2:\GL(2,3)$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_3^2$, of order \(9\)\(\medspace = 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$C_6.C_6^2$
Normal closure:$C_{30}.C_6^2$
Core:$C_4\times \He_3$
Minimal over-subgroups:$C_{30}.C_6^2$
Maximal under-subgroups:$C_4\times \He_3$$C_2^2\times \He_3$$C_4\times \He_3$$C_6\times C_{12}$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_3^2\times D_5$