Properties

Label 1080.172.3.a1
Order $ 2^{3} \cdot 3^{2} \cdot 5 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{60}:C_6$
Order: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Index: \(3\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $a^{3}, c^{3}, b^{4}, c^{10}, b^{3}, b^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{30}.C_6^2$
Order: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times \AGL(2,3)\times F_5$
$\operatorname{Aut}(H)$ $C_2^2\times \GL(2,3)\times F_5$
$\operatorname{res}(S)$$C_2^2\times D_6\times F_5$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$C_3\times D_5$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_3\times C_{12}$
Normalizer:$C_{30}.C_6^2$
Complements:$C_3$
Minimal over-subgroups:$C_{30}.C_6^2$
Maximal under-subgroups:$C_3^2\times D_{10}$$C_3\times C_{60}$$C_{15}:C_{12}$$D_5\times C_{12}$$D_5\times C_{12}$$C_6\times C_{12}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$-1$
Projective image$C_3^2\times D_5$