Subgroup ($H$) information
| Description: | $C_6\times C_{12}$ |
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Index: | \(15\)\(\medspace = 3 \cdot 5 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$a^{3}, b^{6}, b^{3}, b^{4}, c^{10}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.
Ambient group ($G$) information
| Description: | $C_{30}.C_6^2$ |
| Order: | \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times \AGL(2,3)\times F_5$ |
| $\operatorname{Aut}(H)$ | $D_4\times \GL(2,3)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| $W$ | $C_3$, of order \(3\) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $20$ |
| Number of conjugacy classes in this autjugacy class | $4$ |
| Möbius function | $1$ |
| Projective image | $C_3^2\times D_5$ |