Subgroup ($H$) information
| Description: | $C_4\times \He_3$ |
| Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
| Index: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$b^{3}, b^{4}, a^{2}, c^{10}, b^{6}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a direct factor, nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_{30}.C_6^2$ |
| Order: | \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $D_5$ |
| Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Automorphism Group: | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times \AGL(2,3)\times F_5$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| $W$ | $C_3^2$, of order \(9\)\(\medspace = 3^{2} \) |
Related subgroups
| Centralizer: | $D_5\times C_{12}$ | |
| Normalizer: | $C_{30}.C_6^2$ | |
| Complements: | $D_5$ | |
| Minimal over-subgroups: | $C_{20}\times \He_3$ | $C_6.C_6^2$ |
| Maximal under-subgroups: | $C_2\times \He_3$ | $C_3\times C_{12}$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $5$ |
| Projective image | $C_3^2\times D_5$ |