Properties

Label 1008.598.12.j1.a1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_{14}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $ac^{49}, c^{12}, c^{28}, c^{42}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{42}:D_6$
Order: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times S_3^2\times F_7$
$\operatorname{Aut}(H)$ $C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(56\)\(\medspace = 2^{3} \cdot 7 \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_{14}$
Normalizer:$C_{12}:D_{14}$
Normal closure:$C_{42}:S_3$
Core:$C_{42}$
Minimal over-subgroups:$C_{42}:S_3$$C_7\times D_{12}$$S_3\times D_{14}$$C_{21}:D_4$
Maximal under-subgroups:$C_{42}$$S_3\times C_7$$C_2\times C_{14}$$D_6$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-2$
Projective image$D_7\times S_3^2$