Properties

Label 1000.136.50.g1
Order $ 2^{2} \cdot 5 $
Index $ 2 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:C_4$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a, b, c^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{10}.D_5^2$
Order: \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(D_5\times C_5:D_5).C_2^4.S_5$
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(S)$$C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_5:C_4$
Normalizer:$C_{10}.D_{10}$
Normal closure:$C_5^2:C_4$
Core:$C_{10}$
Minimal over-subgroups:$C_5^2:C_4$$C_5:C_{20}$$C_4\times D_5$
Maximal under-subgroups:$C_{10}$$C_4$

Other information

Number of subgroups in this autjugacy class$30$
Number of conjugacy classes in this autjugacy class$6$
Möbius function$-5$
Projective image$C_5:D_5^2$