Properties

Label 1000.136.50.a1
Order $ 2^{2} \cdot 5 $
Index $ 2 \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:C_4$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $c^{5}, d, c^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{10}.D_5^2$
Order: \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_5:D_5$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_5^2.\GL(2,5)$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)
Outer Automorphisms: $A_5:C_4$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(D_5\times C_5:D_5).C_2^4.S_5$
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_5^2:C_4$
Normalizer:$C_{10}.D_5^2$
Complements:$C_5:D_5$ $C_5:D_5$
Minimal over-subgroups:$C_5:C_{20}$$C_4\times D_5$
Maximal under-subgroups:$C_{10}$$C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-125$
Projective image$C_5:D_5^2$