Properties

Label 1000.136.20.f1
Order $ 2 \cdot 5^{2} $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:D_5$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $ac, c^{4}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{10}.D_5^2$
Order: \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(D_5\times C_5:D_5).C_2^4.S_5$
$\operatorname{Aut}(H)$ $C_5^2.\GL(2,5)$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)
$\operatorname{res}(S)$$C_5^2.\GL(2,5)$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_5:D_5$, of order \(50\)\(\medspace = 2 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{20}:D_5$
Normal closure:$C_5^3:C_2$
Core:$C_5^2$
Minimal over-subgroups:$C_5^3:C_2$$C_5:D_{10}$
Maximal under-subgroups:$C_5^2$$D_5$

Other information

Number of subgroups in this autjugacy class$10$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_{10}.D_5^2$