Properties

Label 1000.136.2.a1
Order $ 2^{2} \cdot 5^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2:D_{10}$
Order: \(500\)\(\medspace = 2^{2} \cdot 5^{3} \)
Index: \(2\)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $ac, b, c^{4}, c^{10}, d$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{10}.D_5^2$
Order: \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(D_5\times C_5:D_5).C_2^4.S_5$
$\operatorname{Aut}(H)$ $C_2\times C_5^2:D_5.C_2.\PSL(3,5)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(480000\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_5:D_5^2$, of order \(500\)\(\medspace = 2^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{10}.D_5^2$
Minimal over-subgroups:$C_{10}.D_5^2$
Maximal under-subgroups:$C_5^2\times C_{10}$$C_5^3:C_2$$C_5:D_{10}$$C_5:D_{10}$$C_5:D_{10}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_5:D_5^2$