Subgroup ($H$) information
| Description: | $C_5:C_{20}$ |
| Order: | \(100\)\(\medspace = 2^{2} \cdot 5^{2} \) |
| Index: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Generators: |
$c^{5}, c^{10}, d, b$
|
| Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
| Description: | $C_{10}.D_5^2$ |
| Order: | \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $D_5$ |
| Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Automorphism Group: | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(D_5\times C_5:D_5).C_2^4.S_5$ |
| $\operatorname{Aut}(H)$ | $C_{10}:C_4^2$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \) |
| $\operatorname{res}(S)$ | $C_{10}:C_4^2$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \) |
| $W$ | $D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Related subgroups
| Centralizer: | $C_5\times C_{10}$ | ||
| Normalizer: | $C_{10}.D_5^2$ | ||
| Complements: | $D_5$ $D_5$ | ||
| Minimal over-subgroups: | $C_5^2:C_{20}$ | $C_{10}.D_{10}$ | |
| Maximal under-subgroups: | $C_5\times C_{10}$ | $C_5:C_4$ | $C_{20}$ |
Other information
| Number of subgroups in this autjugacy class | $6$ |
| Number of conjugacy classes in this autjugacy class | $6$ |
| Möbius function | $5$ |
| Projective image | $C_5:D_5^2$ |