Properties

Label 1000.136.1.a1
Order $ 2^{3} \cdot 5^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}.D_5^2$
Order: \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \)
Index: $1$
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a, d, c^{10}, b, c^{5}, c^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{10}.D_5^2$
Order: \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(D_5\times C_5:D_5).C_2^4.S_5$
$\operatorname{Aut}(H)$ $(D_5\times C_5:D_5).C_2^4.S_5$
$W$$C_5:D_5^2$, of order \(500\)\(\medspace = 2^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{10}.D_5^2$
Complements:$C_1$
Maximal under-subgroups:$C_5^2:D_{10}$$C_5^2:C_{20}$$C_5^2:C_{20}$$C_{20}:D_5$$C_{10}.D_{10}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_5:D_5^2$