-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '3840.ft', 'ambient_counter': 150, 'ambient_order': 3840, 'ambient_tex': 'C_2\\times \\GL(2,\\mathbb{Z}/4):F_5', 'central': False, 'central_factor': False, 'centralizer_order': 32, 'characteristic': False, 'core_order': 8, 'counter': 429, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '3840.ft.30.A', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '30.a1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 30, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '128.2154', 'subgroup_hash': 2154, 'subgroup_order': 128, 'subgroup_tex': 'C_4^2:C_2^3', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '3840.ft', 'aut_centralizer_order': 16, 'aut_label': '30.A', 'aut_quo_index': None, 'aut_stab_index': 15, 'aut_weyl_group': '256.29598', 'aut_weyl_index': 240, 'centralizer': '120.CA', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['6.B', '15.a1'], 'contains': ['60.E', '60.F', '60.H', '60.P', '60.Q', '60.X', '60.Y', '60.BB', '60.BE', '60.BX', '60.BY', '60.BZ', '60.CE'], 'core': '480.B', 'coset_action_label': None, 'count': 15, 'diagramx': None, 'generators': [19678982527, 19678982400, 7, 7187016360, 363007, 19680606863, 367927], 'label': '3840.ft.30.A', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '15.a1', 'old_label': '30.a1', 'projective_image': '960.11361', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '30.A', 'subgroup_fusion': None, 'weyl_group': '8.5'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '64.260', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 24, 'aut_gen_orders': [4, 4, 4], 'aut_gens': [[6273, 6279, 61447, 45071, 4289], [6145, 4167, 30855, 22665, 36929], [6273, 30785, 63495, 55433, 63687], [28807, 63489, 39041, 55433, 4289]], 'aut_group': None, 'aut_hash': 9157267912872644131, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 786432, 'aut_permdeg': 48, 'aut_perms': [7053800754970360769284989861004919840611545509697723337724554, 6386964735930917174842259764869088756982802231722520564902154, 4619580846218453532729194828962555418629524461561162214167763], 'aut_phi_ratio': 12288.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 1, 12, 1], [2, 2, 16, 1], [4, 1, 16, 1], [4, 2, 8, 2], [4, 2, 16, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2^8.C_2^6.S_4.C_2', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 12, 'autcent_group': None, 'autcent_hash': 2104568112182592677, 'autcent_nilpotent': False, 'autcent_order': 393216, 'autcent_solvable': True, 'autcent_split': None, 'autcent_supersolvable': False, 'autcent_tex': 'C_2^8.C_2^6.S_4', 'autcentquo_abelian': None, 'autcentquo_cyclic': None, 'autcentquo_exponent': None, 'autcentquo_group': None, 'autcentquo_hash': None, 'autcentquo_nilpotent': None, 'autcentquo_order': 2, 'autcentquo_solvable': None, 'autcentquo_supersolvable': None, 'autcentquo_tex': None, 'cc_stats': [[1, 1, 1], [2, 1, 15], [2, 2, 16], [4, 1, 16], [4, 2, 32]], 'center_label': '32.45', 'center_order': 32, 'central_product': True, 'central_quotient': '4.2', 'commutator_count': 1, 'commutator_label': '2.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 2154, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 2], ['4.1', 1], ['8.3', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 15], [2, 2, 1, 16], [4, 1, 2, 8], [4, 2, 1, 8], [4, 2, 2, 12]], 'element_repr_type': 'GLZq', 'elementary': 2, 'eulerian_function': 13020, 'exponent': 4, 'exponents_of_order': [7], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '32.51', 'hash': 2154, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': False, 'inner_exponent': 2, 'inner_gen_orders': [1, 2, 1, 1, 2], 'inner_gens': [[6273, 6279, 61447, 45071, 4289], [6273, 6279, 61447, 45071, 4161], [6273, 6279, 61447, 45071, 4289], [6273, 6279, 61447, 45071, 4289], [6273, 6151, 61447, 45071, 4289]], 'inner_hash': 2, 'inner_nilpotent': True, 'inner_order': 4, 'inner_split': None, 'inner_tex': 'C_2^2', 'inner_used': [2, 5], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 64], [2, 16]], 'label': '128.2154', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C4^2:C2^3', 'ngens': 5, 'nilpotency_class': 2, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 10, 'number_characteristic_subgroups': 13, 'number_conjugacy_classes': 80, 'number_divisions': 60, 'number_normal_subgroups': 772, 'number_subgroup_autclasses': 78, 'number_subgroup_classes': 1264, 'number_subgroups': 1756, 'old_label': None, 'order': 128, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 47], [4, 80]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 24, 'outer_gen_orders': [8, 4, 4], 'outer_gen_pows': [4097, 4097, 4097], 'outer_gens': [[30727, 30913, 28807, 12431, 63687], [39041, 63617, 63495, 47247, 37057], [6273, 63553, 28679, 14351, 28743]], 'outer_group': None, 'outer_hash': 1342515215546204932, 'outer_nilpotent': False, 'outer_order': 196608, 'outer_permdeg': 1536, 'outer_perms': [128604724148710156947780484801217955734964067245267117549864020008526376124961460563212267407091649654662976455215290516348734424766574425610984174771337196075470280763882153195808330966653312804521532334410767286280001433974471104640789705616133283242372279611472945211516702817936556417700851856961499818473114555247984022435277701499097010674856534541967393160621762116157917148822125341913816405635746312848874691911347011228831884524612424549905276310754890298525185691964004275279668247449991851319383185065866899334135901036251013902995598119636144650931017577540155810082508870591366703520014928076920317137211510142303554686194505508481208075462349847629430971382993205463533227023239279985097997523591885949008217352107830021079290628010147107113034898756256059270606704445058844702838997279832486594055269904976203555568407596626271643872782436844843621320401097470271080024640449798763844937193696764506306772160316538882029808926259801331495778750251716479904943293751472384189110723334364992815857286231497352076412361997176184228917819023845602127080016463641587750295611501617257928366833358677114348216013609303252886501564659903867755231608483181481553236987313804338444788859517557547743703456780574278113122531012036477966980326934072945692424207602761237423515717517643136692575531791185942321371880920357481396196963028877524295195116536009359377642676351628221850727118929958717921202774896812355441383156633942728557732880781032011379115522245025318683908591125668508407462038517887364214900013677299396763342442970926788234826891074880531967106037069031327298301514437031531553770277198929914993080712767547602628189376481478468824239595975002155461352490651654342241304558518884176982136564066714086486275279795442861680106706700180479299653461996787058629127232333744050960887081399406637105451518320197681428857166638425640159978002371618622234262225175522332014109733447210709638251971403038728353187469879187377598468795283758274733426974030726407331889216796264182258032699552776896565475845301926888787211231850590441943727910600865877030224382632887407325329063746781181794512212754824197115393472371545960520146430109868725054900715685748301779845966357213261632249830333156070232687976255099506330482180643424440970994767112357234462396195015981932449060807486362763848166040016597055900471731853497997634382317477909918105582469775890453042296018963717889935076815035546604280110598119864350552460249099487105981545719207348876195233070290851548916863706549239035719198915000219073912267371302175714402256495438176916103917811022859886223918569392044809221224460949085803409674182971772297095350307081190031576789773991401243743215389002748972335568012941129515917855542497723761191788300285379640817075630531155124559861528794242440125041306731920696486760770736811759061028870849317343147828330063874929473031238698880607157518748761849534693318927077100746150763209330208187141043444222547572424475502449470396766988586272913785901695594730294073416248630285812822456078493473699705867827879660397926280277883679483862126568449177534292126203319912775777824126368576442421958004754659622853795945563257577062899988035567567256026027297280796994807643377166583102894862808282857666084206863650135828836942569388310994307162126826532646859172718913075092671282847484359954226084067224223296623600627289901346831640379752565500900896897037294151214135328043689584726208780360327323222529799474222744887326286331277241409588118497744337845326854642383811830320896315200834734240446957642518984610564091818321297988793712662846545409008998755234820222155246074868866975405531851553225510404270275005778385394424131000050078191453557999170731004193415403787639593747753249905148321923961523360514454294244154768333665264796300780058750523736338232967510253618168935344361602766635813132841823654691820656993707052691552457419184831800029976522599690455305467913293501028559571556789750809505804987815370519232815510988247964931295096657219351289235122315512606703019856734292542305516684534765456158897601145741020341739457571885142256050644696150157772697366501716224544158961254781001530160638780138463972673073647608281647716745051861924697576576677508088336569828007099791851138924979558372344, 55895808774410025098023819094062979365536301573432341083167794957917156322808074851020824732209418164199799798376814707005260220751646982084353633755626354689977358521127816939334248516012694722177766596335753403951687660818452901737186974895255190818903796152301458618635270483859624447495946396635083018965501657088690850332597073991039605322946671222629950987804368758806648396508055341337803509129091603277833758376577316409031055461966302580627588043499954111009733097020490708555283172884961498988377200583068538607981821044063907714936506689021632685713701869825701499547188624860003756754820416328747191652882552253779467406747842049651378831769311599130847865439449791670268941380989406495106990131335681821709805533602982554211793011485134782317999623290643816879538881050796278474263894505343127399043072692456473181118042049141549182428131253917458472781353353445490824545286195258417704051797562130402948987439678184329880731101708200433900874176447909574443648075605502424404332290414695740720917208584612471203680809966885283816620550537310525700739101325888757422966012502541326051372368372812743244953804602014850372420643668643198014447935096598642203141419909350047101294837729904981003441386180349295661740193760326281030236219027176423960223313667755060328964059850251781385869616381740984400627850226841440391685613097054155171780950810245789136437862037118809468825445755706777330856806687473851420313821935706870779117572505591755638989887005469808353286424941612563420942890308553382263637556331297875601646318060248796220975723938868019064545299488427655600873581657039521832324628059227106087548782536259454776909480959158345184193788322006268980366549791055465749083610302136080039654564414810159688155076080938322415170518106995818524962190747779500126339676400120894484223085607508128402614286706808950735638471504920106316224275059923024096518925892074630743764620872549003373737123749263965488381039810237358922964349178926600635638567979967314886447173282071035015945989664890039508745332153563981587292163185930564597416141160848997771788100346204654017656332421410997894438826798227422490698269734879443897319796388739085653295016814052627557670478344666674610928932621066684958214007016386252753069537494364160296949805076222820438052876605115245374964828712622693500060871804996626981637023598914337211003498552638149763106768857672194705752562884370350000783238285024080190732479805269946670690919427227146612574596999061357489065498971872092911740191639723917434903079810418763940250085475477969800718500406268277828736072212521540824548144692904141447402296129728280317782848513854697071534625647304366812328442204015557484654624897063689629319861283319644425154911986666000227525814695241076471414285407332152803467688851824060157121259412415288611283350389771298338796393361502460004073796546819733529518054015719327950119632793934436124640375789149992107806896167165171004847314853937050506510847441750691014425496913979304133839128384205711317516768936562552390504694162760377651321481551399769873127388848158767241736792277150447728412298424753715735202402585270369084263282428919984275062432680347265203141702581063736804324899153653499032486850911115387418506075962058576853059724714090719990164861708130351736094644853686124506933654331271980699466532551393692326217943764009637602636693483310616837848740861175557925789609387164687845186455859422513579433329212075791313539298551988503964104070120492296550738061505377556638135941244147017551883602000163058583751424832954018535292141307560088732581460796190945321116846790558418607541949957834127287187959181010560994802002746662381691700447975709306230723728219169288929743980110796584234238166954695378180101593198598358726835394936264597054151737091254527710598190384558981712181696045561277510979071959870420399812814285221420141756315397923804222744852212526204282351318647371156631280401750459257868703703937985710442097065092623301404057287743605672219796380112718059833162003928639611801316572819267062876874383148716559663801139112853849259170864895185043328478935156214515881882854666656065878587798510356509883554777826627269179603873832192612623007945827615353230722484044045597720457242485779061548502427732896598345, 14354037997345064446164071105933164328507472243812642454006056156587975496709953391114321631852057186911863980733307640076956719142640909770082702172307167513314375108532424489352839955893236974637386923766071477933615959240763022517794308973099875719640829465499212938415028599873705873580214224629440887240989903942626530770198195373627416658075838779634881399568904430735048961171611415908134259855560624982779162492614298714959466396189901242333256361369750778866146708653854290970934119968901837672436064056270908982637098572894265968785149515040013520967746834725006766577088933658193115614221924523754390904994722631591009692626834419101864072155699549042245716061338383289931880744509054223594450246638153194399481432798117465296547796919999094280041388019963011699838772260760722477623848769583958650620141926192510194297389057974454201653701397826964167141087957581089755604665791247210862871183784786709586918603445929462157175409392960025223737383087446492511305127379123335400156572731682252390586356074418439996970049528957199384134537504227681079641272029258641586812383956122575497435214720740550375031600798034693284968716518825144005778865126209454508382504414159301044239625745354643700921348563360561077478990737464850028540766749170726484495856186136709044519155601813082737340039957950644303511247279630080550322765765510059820879254471444784450748631549279107751057820459723961851765056358728177419616311629599146871466940398324842510686723948334124846475310051175984841897876780764204903628632399421337138539560791150314612419111989349735443143401897564576506639631888294380304037818194921936316492016194445676176255740367513922601184150106260133824095036459457649878257173715465544770712896700445235337455739675437724239986405739622055513388431886838476468612340662319328807185362777962494420120318893806763974708611460160312140580535513536989349611758499634791058281552811963058660448895944975234658288520702988584505231422573824349833270811133322383475257284674958327486020659458195327791991298928438197134124574168585809904539705677957285631529638047632026123457765763698257494285112087591855616965262962355812222330185202507022599878638164094418124430140898279400287426132015059350832701206454799877827718271870809556908175182951965722515388786002135761104943947852619749430865190964521005962941523412035938201926894414418811245785835186847498997719967757392180318395683965565738072871080570020243984133948567504614216532809165022697314314029938110814428164734033512225740888273858287791537046650637574647520388825569338505377071842394802580061088094396267483419105360168997540242408204698410600046813283571575961280287760363125806884450793760302935262057147614279676910670522653577108691018682572299299124693337076308248403986948096530398789892602408513232484435724779413866106129180313259412615151099967610473778149289919603301618976635289481044152907288962398716300348256105052333465717859667843930661169597409622802636720849023447011187693589458720274469808364926726258157497165399046243075936850220806245987305909845928313132612855657074361238288525340207791816621437378169783875717296674061705963841024621547437330869698323366815267959698402617300857624615893693030305083787535143594529567868958161725272520063794966870376462940483196834515100720549223385295844325012158921201036503504894535347452982931436412392032391651270900292044071967807605950337505244592284418413628093443771674026728405932930331506869533225064254691787905043590982819274273785624590636420011543666970664987280410543781727112725146260400643262707800969504245311067161139015990758961505671607319914423816285789665581409963075433616421664142321661562339371995245090675052439551283199820268797077086497490477378071603784536130520901688259682717352600745634017879743321974391614589559671256418587253250219848081475302799426291711264221480140193410022771941275510833265267177307561872743185672056190817084062476434453495105586263378895635516590496678631006644803478247398404218565105042977683711210195460076454848769281273546636918631112225755864347417139774401414905013948427208434133655304626706876701107572451507146820197560106241909438760178368512062692439951096858831348820897950227852742644597279141271618668080201504620], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'C_2^8.C_2^6.D_6', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 12, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 2, 4], 'quasisimple': False, 'rank': 5, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 32], [2, 24], [4, 4]], 'representations': {'PC': {'code': 2216740028456, 'gens': [1, 2, 3, 4, 6], 'pres': [7, 2, 2, 2, 2, 2, 2, 2, 80, 2028, 124]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [125101729084386182, 125101750005089674, 25038659807093174, 125101736038820194, 24992906222183252]}, 'GLZN': {'d': 2, 'p': 20, 'gens': [108103, 8009, 136017, 8201, 72009, 76219, 24003]}, 'GLZq': {'d': 2, 'q': 16, 'gens': [4225, 6273, 28679, 12297, 4161, 39041, 20489]}, 'Perm': {'d': 12, 'gens': [43908485, 87096367, 43908480, 5160, 11520, 16, 87091200]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2, 4], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_4^2:C_2^3', 'transitive_degree': 64, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '32.45', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 60, 'aut_gen_orders': [12, 4, 20, 4, 4, 4, 4], 'aut_gens': [[362886, 7187011321, 274467951775, 19678982400, 5167, 187768627326, 5047, 5040, 355898591704, 1], [5160, 262055416326, 19679017368, 368392147200, 367927, 348713532720, 368047, 363001, 99632695817, 363006], [126, 7186648327, 274467945305, 19678982400, 367927, 187768990086, 368047, 363001, 355898228704, 368040], [367921, 193558187527, 368392533430, 88176211200, 120, 187768632361, 368047, 363001, 99632730671, 368040], [367926, 355899818161, 274468308071, 180623520000, 120, 348713169966, 368047, 368040, 193556949535, 363006], [126, 262055784366, 274467951768, 368392147200, 367927, 93924593286, 368047, 368040, 7185426904, 363001], [362881, 262055421361, 88176239705, 368392147200, 5167, 280215936121, 5047, 5040, 355898580169, 6], [367921, 7186648327, 88176602471, 19678982400, 120, 348713169961, 368047, 363001, 262053826865, 368040]], 'aut_group': None, 'aut_hash': 1483974879331033022, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 61440, 'aut_permdeg': 48, 'aut_perms': [10055918268190300748547729577975912796417288146240168627905847, 9571827215033413321987878642561080868727378845530293091411501, 9571928231412665242382007266748958550722707603140080096325928, 10470344567759487031756284357298966805834717009831816552502962, 9573664062381657176684232901619813429037581969677903382944978, 4712618572699495250271753400423613303665718036802127174568110, 5622561253974010938964782955054597445118451544131763180202539], 'aut_phi_ratio': 60.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [2, 2, 2, 1], [2, 3, 1, 2], [2, 3, 2, 1], [2, 5, 1, 2], [2, 5, 2, 1], [2, 6, 2, 1], [2, 10, 2, 1], [2, 12, 2, 1], [2, 15, 1, 2], [2, 15, 2, 1], [2, 30, 2, 1], [2, 60, 2, 1], [3, 8, 1, 1], [4, 10, 2, 4], [4, 12, 2, 3], [4, 30, 2, 4], [4, 30, 4, 4], [4, 60, 2, 7], [5, 4, 1, 1], [6, 8, 1, 1], [6, 8, 2, 1], [6, 16, 2, 1], [6, 40, 1, 2], [6, 40, 2, 1], [6, 80, 2, 1], [10, 4, 1, 1], [10, 4, 2, 1], [10, 8, 2, 1], [10, 12, 1, 2], [10, 12, 2, 1], [10, 24, 2, 1], [10, 48, 2, 1], [12, 80, 2, 4], [15, 32, 1, 1], [20, 48, 2, 3], [30, 32, 1, 1], [30, 32, 2, 1], [30, 32, 4, 1]], 'aut_supersolvable': False, 'aut_tex': '(C_5\\times A_4).C_2^4.C_2^6', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '128.1578', 'autcent_hash': 1578, 'autcent_nilpotent': True, 'autcent_order': 128, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3\\wr C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 60, 'autcentquo_group': '480.1189', 'autcentquo_hash': 1189, 'autcentquo_nilpotent': False, 'autcentquo_order': 480, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'F_5\\times S_4', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 2, 2], [2, 3, 4], [2, 5, 4], [2, 6, 2], [2, 10, 2], [2, 12, 2], [2, 15, 4], [2, 30, 2], [2, 60, 2], [3, 8, 1], [4, 10, 8], [4, 12, 6], [4, 30, 24], [4, 60, 14], [5, 4, 1], [6, 8, 3], [6, 16, 2], [6, 40, 4], [6, 80, 2], [10, 4, 3], [10, 8, 2], [10, 12, 4], [10, 24, 2], [10, 48, 2], [12, 80, 8], [15, 32, 1], [20, 48, 6], [30, 32, 7]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '960.11361', 'commutator_count': 1, 'commutator_label': '120.43', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '5.1'], 'composition_length': 10, 'conjugacy_classes_known': True, 'counter': 150, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [['1920.240035', 1], ['2.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 1, 2], [2, 3, 1, 4], [2, 5, 1, 4], [2, 6, 1, 2], [2, 10, 1, 2], [2, 12, 1, 2], [2, 15, 1, 4], [2, 30, 1, 2], [2, 60, 1, 2], [3, 8, 1, 1], [4, 10, 2, 4], [4, 12, 1, 6], [4, 30, 2, 12], [4, 60, 1, 6], [4, 60, 2, 4], [5, 4, 1, 1], [6, 8, 1, 3], [6, 16, 1, 2], [6, 40, 1, 4], [6, 80, 1, 2], [10, 4, 1, 3], [10, 8, 1, 2], [10, 12, 1, 4], [10, 24, 1, 2], [10, 48, 1, 2], [12, 80, 2, 4], [15, 32, 1, 1], [20, 48, 1, 6], [30, 32, 1, 3], [30, 32, 2, 2]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': 1023684480, 'exponent': 60, 'exponents_of_order': [8, 1, 1], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '1920.240396', 'hash': 7250606812080537101, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 60, 'inner_gen_orders': [2, 4, 6, 2, 2, 10, 1, 2, 4, 2], 'inner_gens': [[362886, 7186648321, 274467951768, 19678982400, 5167, 187768627326, 5047, 5040, 355898591704, 1], [126, 7187011321, 88176613974, 19678982400, 367927, 348713527686, 5047, 5040, 262054189865, 1], [367920, 193558187526, 274467951775, 88176211200, 5167, 280215941160, 5047, 1, 262054155022, 6], [362886, 7187011321, 180623554975, 19678982400, 5167, 280215936126, 5047, 5040, 99632735704, 1], [362886, 7186648321, 274467951775, 19678982400, 5167, 187768627326, 5047, 5040, 355898591704, 1], [362886, 262055416321, 180623554968, 368392147200, 5167, 187768627326, 5047, 5040, 193556966104, 1], [362886, 7187011321, 274467951775, 19678982400, 5167, 187768627326, 5047, 5040, 355898591704, 1], [362886, 7187011321, 274467956809, 19678982400, 5167, 187768627326, 5047, 5040, 355898586665, 1], [362886, 99634325160, 368392175705, 274467916800, 5167, 348713164926, 5047, 1, 355898591704, 5040], [362886, 7187011321, 274467956814, 19678982400, 5167, 187768627326, 5047, 5040, 355898586665, 1]], 'inner_hash': 11361, 'inner_nilpotent': False, 'inner_order': 960, 'inner_split': False, 'inner_tex': 'C_2\\times F_5\\times S_4', 'inner_used': [1, 2, 3, 9], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 32], [2, 24], [3, 32], [4, 12], [6, 8], [8, 10], [12, 8], [24, 2]], 'label': '3840.ft', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'C2*GL(2,Z/4):F5', 'ngens': 10, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 68, 'number_characteristic_subgroups': 76, 'number_conjugacy_classes': 128, 'number_divisions': 102, 'number_normal_subgroups': 248, 'number_subgroup_autclasses': 2198, 'number_subgroup_classes': 5338, 'number_subgroups': 77316, 'old_label': None, 'order': 3840, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 335], [3, 8], [4, 1712], [5, 4], [6, 376], [10, 220], [12, 640], [15, 32], [20, 288], [30, 224]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2, 4], 'outer_gen_pows': [0, 0, 0, 19678982400, 0], 'outer_gens': [[367921, 7187016366, 274467956808, 19678982400, 120, 187768632361, 5047, 5040, 355898591704, 1], [362886, 7187016366, 274467951775, 19678982400, 5167, 187768627326, 5047, 5040, 355898586671, 1], [362886, 7187016366, 274467951775, 19678982400, 5167, 187768627326, 5047, 5040, 355898591704, 1], [362886, 7187011321, 368392182175, 19678982400, 5167, 93924230526, 5047, 5040, 193556966104, 1], [126, 7186653366, 274467951775, 19678982400, 367927, 187768990086, 368047, 368040, 355898586671, 363001]], 'outer_group': '64.202', 'outer_hash': 202, 'outer_nilpotent': True, 'outer_order': 64, 'outer_permdeg': 10, 'outer_perms': [1174447, 368063, 368040, 367920, 363022], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^3:D_4', 'pc_rank': 6, 'perfect': False, 'permutation_degree': 15, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 4], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 20], [3, 16], [4, 18], [6, 12], [8, 6], [12, 10], [16, 2], [24, 2]], 'representations': {'PC': {'code': '339095252087333614047069559593955708549354442679144545081731099001340733320034667623523907108046481807596665612617646192', 'gens': [1, 2, 4, 6, 9, 10], 'pres': [10, -2, -2, -2, -2, -2, -2, -3, -5, -2, 2, 42681, 51, 50093, 7783, 113, 19614, 5024, 59525, 64335, 9145, 11315, 5925, 175, 206086, 49296, 4506, 17956, 13766, 276, 15377, 15387, 3877, 3887, 32438, 5458, 4118, 9059, 1569]}, 'Perm': {'d': 15, 'gens': [362886, 7187011321, 274467951775, 19678982400, 5167, 187768627326, 5047, 5040, 355898591704, 1]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 4], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times \\GL(2,\\mathbb{Z}/4):F_5', 'transitive_degree': 120, 'wreath_data': None, 'wreath_product': False}