-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '230400.co', 'ambient_counter': 67, 'ambient_order': 230400, 'ambient_tex': '(C_2\\times S_5^2).C_2^3', 'central': False, 'central_factor': False, 'centralizer_order': None, 'characteristic': False, 'core_order': 57600, 'counter': 31, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '230400.co.4._.O', 'maximal': False, 'maximal_normal': False, 'metabelian': False, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '4.O', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '4.2', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': False, 'quotient_hash': None, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 4, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2^2', 'simple': False, 'solvable': False, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '57600.l', 'subgroup_hash': None, 'subgroup_order': 57600, 'subgroup_tex': 'S_5^2:C_2^2', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '230400.co', 'aut_centralizer_order': None, 'aut_label': None, 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': None, 'complements': None, 'conjugacy_class_count': 1, 'contained_in': None, 'contains': None, 'core': None, 'coset_action_label': None, 'count': 1, 'diagramx': None, 'generators': [126, 1307674368006, 11009533570854], 'label': '230400.co.4._.O', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': None, 'normal_contained_in': None, 'normal_contains': None, 'normalizer': None, 'old_label': '4.O', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '4._.O', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 120, 'aut_gen_orders': [4, 12, 6, 12], 'aut_gens': [[1, 47992326, 87949470], [1, 255247927, 240733687], [1, 200714808, 212373528], [1, 102746569, 62961529], [1, 330233454, 336082471]], 'aut_group': '115200.bv', 'aut_hash': 96265586239778315, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 115200, 'aut_permdeg': 280, 'aut_perms': [14431918493731294730832579428304168904203868808620124460683918408958866250121797520449367564936577033460880302227134297374913559960305928033369798188644810017918871152607582426461148678776371470808157249430095217378994920838679428685147672511811780692000426513265990193882880464577010938155807939816894453071577978128003071962692842052724116373548246128893119006622245958690804889531726310857247659361587527891005755010433348410466707797708304624780447949889089715074254825056333242254671088681967324568844732728409687112435901663732972374643675760729138395912826476, 15851213083146130546038543406867748830938404911622857253815448281741330303229457670419232710999508877338326088777917976855825747428019244752321599753804389027344168583993733262087709659822743340128281020347166945268025969075822430229988861723793878633970042620442974455343002250771117846116773306492557020875358302967601854705003923654921048618473302221758471126884414076645510721277706755137352947154544917738537199539984057254456125117724967523088897328383022298671741766313497161622886342393690259261867190038644471825971749660971027471892615161014095577173884257, 13013399758890980640179145843268899948648282686013641369045542723655150427301948336778612728112928196764167096886266122378760019667952573566790138689353672497500559833928749645190563009782824455607069574217448020674432389825068562023193615188538988001427897014062774036966460934964839343727833522824796878212948912073059166861843994844651408306844400138128496134317695842607352499842162726086280184317504229494953502938550705059125392509105413447801277675380643839683151517422846809535022649948044273393593504910429999373164062931787590839629242954596818254278347640, 12060020880440239355612892833294588430860074251172825352653765799164536275930441207395343170973481815395968525655446516680587395725371401276161853346076444997944525301639554146592516335817636582774174077990729986870105413428068270619046226711009337923931894522745703462846899977831594102121504237716732310755708462457526803185368607541019014481243889500509534871766520130148903541262088046070810216052765332111972364173486302747468176148947022939816783092791956002963509928483369022931524547722343333112523471183574167241827228997060241253509227375863074536376960085], 'aut_phi_ratio': 7.5, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 20, 2, 1], [2, 30, 1, 2], [2, 100, 1, 2], [2, 120, 2, 1], [2, 225, 1, 2], [2, 300, 2, 1], [3, 40, 1, 1], [3, 400, 1, 1], [4, 60, 2, 1], [4, 600, 1, 2], [4, 900, 1, 2], [4, 900, 2, 1], [4, 1200, 2, 1], [4, 1800, 2, 1], [5, 48, 1, 1], [5, 576, 1, 1], [6, 40, 1, 1], [6, 40, 2, 1], [6, 400, 1, 5], [6, 400, 2, 1], [6, 600, 1, 2], [6, 600, 2, 1], [6, 800, 2, 1], [6, 2400, 2, 1], [8, 3600, 2, 1], [10, 48, 1, 1], [10, 480, 2, 1], [10, 576, 1, 1], [10, 720, 1, 2], [10, 2880, 2, 1], [12, 1200, 1, 2], [12, 1200, 2, 1], [12, 2400, 2, 1], [15, 960, 1, 1], [20, 1440, 2, 1], [30, 960, 1, 1], [30, 960, 2, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2^2\\times S_5\\wr C_2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 120, 'autcentquo_group': '28800.r', 'autcentquo_hash': 1736489480735889307, 'autcentquo_nilpotent': False, 'autcentquo_order': 28800, 'autcentquo_solvable': False, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'S_5\\wr C_2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 20, 2], [2, 30, 2], [2, 100, 2], [2, 120, 2], [2, 225, 2], [2, 300, 2], [3, 40, 1], [3, 400, 1], [4, 60, 2], [4, 600, 2], [4, 900, 4], [4, 1200, 2], [4, 1800, 2], [5, 48, 1], [5, 576, 1], [6, 40, 3], [6, 400, 7], [6, 600, 4], [6, 800, 2], [6, 2400, 2], [8, 3600, 2], [10, 48, 1], [10, 480, 2], [10, 576, 1], [10, 720, 2], [10, 2880, 2], [12, 1200, 4], [12, 2400, 2], [15, 960, 1], [20, 1440, 2], [30, 960, 3]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '28800.r', 'commutator_count': 1, 'commutator_label': '7200.d', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '60.5', '60.5'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 12, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['28800.r', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 20, 1, 2], [2, 30, 1, 2], [2, 100, 1, 2], [2, 120, 1, 2], [2, 225, 1, 2], [2, 300, 1, 2], [3, 40, 1, 1], [3, 400, 1, 1], [4, 60, 1, 2], [4, 600, 1, 2], [4, 900, 1, 4], [4, 1200, 1, 2], [4, 1800, 1, 2], [5, 48, 1, 1], [5, 576, 1, 1], [6, 40, 1, 3], [6, 400, 1, 7], [6, 600, 1, 4], [6, 800, 1, 2], [6, 2400, 1, 2], [8, 3600, 1, 2], [10, 48, 1, 1], [10, 480, 1, 2], [10, 576, 1, 1], [10, 720, 1, 2], [10, 2880, 1, 2], [12, 1200, 1, 4], [12, 2400, 1, 2], [15, 960, 1, 1], [20, 1440, 1, 2], [30, 960, 1, 3]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': 542979360, 'exponent': 120, 'exponents_of_order': [8, 2, 2], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [[8, 1, 4], [10, 1, 4], [12, 1, 2], [16, 1, 4], [25, 1, 4], [32, 1, 1], [36, 1, 2], [40, 1, 4], [48, 1, 2], [50, 1, 1], [60, 1, 2]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '57600.l', 'hash': 3328040073188890159, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 120, 'inner_gen_orders': [1, 8, 10], 'inner_gens': [[1, 47992326, 87949470], [1, 47992326, 53479680], [1, 109766454, 87949470]], 'inner_hash': 1736489480735889307, 'inner_nilpotent': False, 'inner_order': 28800, 'inner_split': True, 'inner_tex': 'S_5\\wr C_2', 'inner_used': [2, 3], 'irrC_degree': 8, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 8, 'irrep_stats': [[1, 8], [2, 2], [8, 8], [10, 8], [12, 4], [16, 8], [25, 8], [32, 2], [36, 4], [40, 8], [48, 4], [50, 2], [60, 4]], 'label': '57600.l', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': 'S5^2:C2^2', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 51, 'number_characteristic_subgroups': 11, 'number_conjugacy_classes': 70, 'number_divisions': 70, 'number_normal_subgroups': 21, 'number_subgroup_autclasses': 1829, 'number_subgroup_classes': 2688, 'number_subgroups': 846009, 'old_label': None, 'order': 57600, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 1591], [3, 440], [4, 10920], [5, 624], [6, 11720], [8, 7200], [10, 8784], [12, 9600], [15, 960], [20, 2880], [30, 2880]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 2, 'outer_gen_orders': [2, 2], 'outer_gen_pows': [0, 0], 'outer_gens': [[1, 47992326, 87949471], [1, 47992327, 87949470]], 'outer_group': '4.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [1, 6], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2', 'pc_rank': None, 'perfect': False, 'permutation_degree': 12, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 2], [8, 8], [10, 8], [12, 4], [16, 8], [25, 8], [32, 2], [36, 4], [40, 8], [48, 4], [50, 2], [60, 4]], 'representations': {'Perm': {'d': 12, 'gens': [1, 47992326, 87949470]}}, 'schur_multiplier': [2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 13, 'solvable': False, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'S_5^2:C_2^2', 'transitive_degree': 20, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 120, 'aut_gen_orders': [4, 12, 4, 20, 12, 8, 60], 'aut_gens': [[8213651349126, 8133447536334, 8220160972926, 4552432340401, 1439044594248], [8145941897928, 7176486562560, 10828829819089, 10918416943134, 704256820248], [8302549651609, 4377795972607, 4384991157535, 8233294003488, 11775982539174], [4210558370215, 6995063658240, 4398878575135, 5704589727054, 9161033334055], [4212420710695, 11003306549761, 10755063935569, 8307852094368, 9241429120854], [4211386865400, 10916609765328, 5607359694847, 8307818265726, 1394903503128], [4311588153894, 8214405741361, 8308014624289, 8128219196448, 1838971330855], [10922684376649, 8302589245566, 8307852094494, 10755063935695, 1426558210855]], 'aut_group': None, 'aut_hash': 6281824195318411014, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 7372800, 'aut_permdeg': 1040, 'aut_perms': [527952839519898658335707352530557256077129405309863594327684419233073534985767724028233589750567044329502695969024749019123753480256467757831693904644729126477112994506002971701830696235887192782401326444762791442940817572696951767147621494484237540445697701325948364875639846755182599040005986903608715336663780098770847556922845845349488312781731322809178721994579373669757651364633270680933302118798062831173163544786048520060448658426203767719042641927342464047094624059780215697676736082619487038278363649737602407094790406640832092143607431157673731664468680459184182276686652195368878774939480307224570626822403807484023157172082511523561858107765668055662014338352595847582348968167992870992476926517776664063771288633947696198586969381835497897727687069333482773567805377419888752830368534213989117809909980652416135615893969078363074171445533018154251768764333402081923643818880339716426202005133707685950266744097611802461777995411413595301242969998430866717172125930516377143144158848057768189794269448839925668293628080091945930703871229994783108864770797822017960946983345775302465194557692302844704419688732767068971304413514172067179031072060845348234030634111521743940149961126612580337143649993414375056155216290992817711544078431090617279025239714375627739848725865573775741620127056413984771256168378332486720956736468440745335193847895656356709558610638935331601709534842683652422292877500180252900454347088962830428902253792593857940805022607638627696046784065513777085166430142567103706661572587177305073891656697274433876696780452838062001052037453301802565721578742838439808407527631464752224664250919481701364177222853864539504656154680136608786163427617954529614959465505107756250823386811233145764794885531427344041732601316000125658082804415683276722253459725817438032839965229733732500047124816083050344874996278503876276264396742211295929527910162166988605399576318365747974976197235737606912446359752379540242344735745771871699483594595572136064457585321002522339387483751449267785257791515456953358349299012146732642795069245251721605096415282316219910676622253095626109666903799766603999919864817595098019778133558162051788739062450069817017315185070165173968323155100104728693472127373647291738293259213393828781524522277867993384744211504921389652908804912950532018595268147327360092703379102806157284442166856148415263773903701574442828489406413832635324266875217616191658049059807540012374799451774633899095395636985951483828912426054096797122469457630806882496292443528837697766905010926884791575204760727798325732903305307193453024105385924199467900594426469906930282579363957416285871668838169810273185514199594147143693814098939674666511330482001, 291553687409645447651209473126548309060235261024852181350545424981194309140913529737720184033807313804592318280418105478506807327704983730610778336992730588734857513902188010163155251668481482280170732774791238436671811593357687665440460298499022760965386523881124182992466910029453577814512522128238253649255666415680078047797842502068661060988393422725649792857503210079768670847049471885729979156110010235197764574230936172406993700302502811127314481715296279005000657631795167260337416706756192593840728109597688938630076427211017929278791616587252545613087188587409140266471735519111032411804678787144189049824364883758921202514941589743483105649875399474947466881939191637591589904998321025296284401015668718972369466027900096504799763139396953289261211394706494236572525650431015296865901500785343568903118566124883237412805552254076160590705289811577222801876829487887271067313153061615342347255309727109563150562649632838488804782005125886005373901137627623257434163970095948657323245359837822596803672110789801363649733192232301756412061231987758056777692186122996766143630226409707796265852836812945530839157954309095974450752239244993836642504131496049195746927834689932784841375156478413143530514483708852550961776399439954238186195177247993105224967525410689448888469791131029002740282419244763048701235262218666508325515264392271529460683334272386560788165989921214221780832358271013521691210719984224935157167368633310889352249786732841637303032345376158964468969830950288514801851797155342330752785220910907213731633195406632350128221246195225415791670703752736239567077643673773272082252191160135569552884157927326363075319569725146348816813173197045302546376899229781193180799423956148209792020617996797887439034731181560790005219677393684999914466264600609017435806349811220819851607095288495261095754807365475682190021599754010336314461478135202345013958824535350460297556022880436127166179296284373831349802606169524452316012783595421524015280861764479571501802313467908494012130757123988151934552414436055201014858633257073943154254927324473792576807792322645572883125178135818719810888774788071812470443329202295057989970153255407566953823349139610970708051402182566244518821344929863879701855606334432974332556698786671427816325761626037707414021102019062865963506676636686814647346488607640661298608107633720916279473090488589098047477413649683563056070273465748633941847019265699305555219213800774248084285093273537858407152207895697527684506797423543261370675935451760696565143734031348947307596721101909142161386473204190536728650659278457076918373010831378279155425415702153196299890093875343805276809387609477569107993517180953763629298402926665745908643601, 699207221017272636497010456776653242893192664178176090601270847355146961413368892944341609736234437262412954020360920908684784898917418641176466059905040324129178739364364914443717143581099613100522361867991836323351977799450309543311158684733046416817655044875866390667489458290872485164694433901988103090974056466440547433860405877178549766443100965031281688543808439639365408902370948821784111856807577601106492372024610587466012923841100944135490297077104571249553122117118575217525659984217386478776904577067381141797078857484041794652767314576875409189451430665582768088651410278480925052847130048276017278907462070612448313317872095125712503739801456789328524818373804818982055439878407002286961756315136939228171672992050933694949810971091571974283139728513528914481779508461071280339508995354455890574846034470333738592728277600030437933418955130592158648314875953865179416434452464929666202017576855083009314971062001650895171584888125323795981792276222978737412800107145877568018584854743859037125109436226939409355429295253220398166296500609130088218666786355879203009370059035082486604072993383073827476179121839112626358472175966870814331949055111465915876292843006920383917238813279281367431669382995016582230689625249938713709245858380610228101579652199902167547266712024242002776052910741343387636530356174511395368909691769048912918260978772450496619420242504802655417089772899186827713479146496693262074363233139919835885024779594158863835234071493393471344148028810924320373810131767757858069306914402171601516684904082998946303343006191223092779428311565067920048570289442168597999755732104664193503331897152210051841534874209243568328316325200972363489170087012158761996547880575298022935631335494088960343780502214827178489171633524249178934633008705555060378496058727209735271223391567866738405296876768150143389020982223948900220697409094502272216549205066650099115230978091193635611259360827463736403028958412552551302142130469006239734053907394660736956345415356259849421617803092266968080998542673379086351119220691774477364983832773244620441562713686619188400708658221446038858299355143447545331747263748796071900359713744731439485832514710464183257410214626354287696304651165731112888605688676060205112161693184793584102586165796899350712823299784069880941921507331543421675273751920171802979946001191067956144266229799073342098664843428955387834180604941089280439270992745966131445309663681327495736488845142127186480982785732434499240791340420022601215647965292382996771858915868949104309058598039209653557692881788330489658691807811727596064101903656248996602677609541987248908281619479138422373973844576405177164450677457493588283045121286497578150935776, 428741453422237278771273676734847386413375727141054020519869483538424742555377474425508075808601101566951015442196888483615950535421987368014582458302713864302861406749332192515165334799752879704921945966633098493952774886741125327046119034714830577974806636127666277715020745933771529377220684223349444690783136547800504026630085041057379900704217432742449222427532391724566578714403977901099770261613347112233802777888066408777066582424415045332560396634877756006966170125902931467608327200777444735857092341601687921280565737343788027884405253157092640247037471331993706890500551338584977230585405029817887684151757917674539460413167718802390175556471244363391294159765645137852673579773488513485325927415662215154306740783183302355850125097974499642186559407427911104463689306711156692248857943452807627779547739770845978072714380710680520120891194531438501906829825064631885537528107960657066774552611312705394157176201358108978894199714905862007725926339098043284175244031357644342216286403004173826960698831543105699428083529120698637496859049544426213391940150428157747978741587549152462419457947091003556475911666666543469625239977625594495793532069834549780757708666740922589401098040679179167770145291261013046332893857563439227733741402780326227957708562298264782804928177886278606005646733505303030965136430855542683225269501556709765698810866800585841180131761634792630158007945831598159288085681641672492688820306027440304965651319833107005269680239775783294414236115037519334407331846517247121349229223010598674025244127020760941961775545353796427105297693519923711601379019256458852407347782975188451874585421711745525172116635986446430372722166128958252389713766016134104764327539217388165201846312736866378367313333824223057627148787827751279012480510295293401045027863347082990024485611014580487479049103384807912456235762505837842033630264418348362171389713488036817768101171305850627243768071101324266040020949332323673357283431525659525388709680241900647725395701746765934726184070832414678381312447955290728889630139295608143737123260579723343193124817673475384922022278419671835367863848099535745682985222819496565713337162322571388771537316728784719501868899173379550609776904644878551561339258106890605587405859260110555210508709872104819816462612534973682155172329407969402624995862273240093140448666803875174906619266272379296942820412233331809954422230572413167329317420869015680864698736291440325253867379253558820083558432410387014123819788626351252675159003293527839884319823911417742463507644724050283992963469415297515282325314764474543211930779732062324812158421562137115091117265095382086702945112351509246418383057714206211679654793428145940723782671, 837888720856400710933461664064660467303743832888255030921792093455519968864203858412566708516241562082622886307300554016731182929093311421606018653596803173413924086137299401857704910759074560282979707724921364836373231486855850977379484043805696676999973896709308203928329682683546432505753681582166643158676205102451259800195555226316092837939842632976508033683076780806702195249333137177839326261663326217220023139072782182742825420367432844879558347065640646310704719995354265947543319078458816959261009496853786634882889694758246968029800653048673898937620872745728288301826450539655632478596045119558990882671020990520694391520755554961502746281854155510972832486871320854565763380349600798677333500324288290217865307234229010419454507713521858903257401395116234602329795947207720361082554515946606161976206698333985485810770853233677204784398737880969508261897751203153999231413988620072938116056419813919340228252350818588231285661967007137879030997732658461609692029447047288799303068023493540798791718744716616079256279335620865501808170016128093463119864593862751356010864568684832973098002237159447530333277101142772783910230979619834858326054175711546611380461039856235677598720500425126614162730788740342930332184377158349968940564931734302815773906961340568025352769882228446326176646175039127111549700369645945064773019630955060593321122407867683515220853003303865050545687113160485809800215622094276509065227507659403093734058583750582599462916149902702509067218083084680380425221490465756282294037879234382179904218307390129605331820763897687110550589360677516424756620972363486509725545833245454246958022559064248082028261369731962548699343695608680992408152890108440002841512010954804718074528486357538271569175470766442353749332553911522531223283835224628489737865000580706046200161886463709315905057922181390966965543013395548800850579537837988434778372705563163787081514447397996957041581016788536175140051692063413975377506365815019960859946721946443576010116828399381694629252271208154893676011557129678717735667095635787723944999029813238163731790937630139742326467680652361876713487377433519460178639894444343115382219818157550255508757715529438354264400017529975760010891774130622783158116459460234720353686479257687189320742279095501971972922034968369168101979442137003918900290079758740868592766633729773581381413205446153531962347794889072668699014695399166161256790363093610046456606609110542395671907087759858485035139410694905494945372201464465031556282519711543969621102331967632068284197385502464031218824325896242495929985066167329387501926018302313524784813857919253724454643991243087645432410171277646990850439048338365543402760804564300706903687988, 36123798464359965232088760146038083234407739126188080914180506649148273049406309013881716346248008110907705612710336397346341438744301972786988339664688122191254509880644834327933521834853892442542463779957460455726661697266926919164773527176898502000669342324340575498822580954774119350206311760880234488659098801462698797191159707550495193658077732502175903731205779094614602121123147682227687681155629346839968295357573467003442458930590596691972913929489203814978735266439282271565882705184449425346592568604937190277225867535594225707737112593740590817879708096245958348647301126836790816041583868507596388033056898045514271809952459634027216488054234199800609461336868217704516802603779332636455726474957865119752559937462444040455955160162859238090023156265557822075478311231081340521156412017811254219703966533788327635784505301015469448271165291404486079210874252313703578507763614985401642432192313565023158974653092772598003690670419679862722959897911267871693940483997569680223041732180304190726296293723475825840111053457184951775076169095792820899637933336398676648190576572523009504727282343157790507506495300723987416887525248950450191578883390737285560268627105934790588627068316437744233415344199901967684428463234076504079093564573725562393359604854675686911179306541705379683911456165350051824642232407622198424155977458633086241884963531265050959162610953215750409159373203916023688554206027358220837014044956785798875293811033675327804466823349746229965162665832356522446517459072924675122961357949086871371410830392623872901216772964802406111969996565248605030001512452164902687768864423592976632405258097862153929084117094334491369016166356851698392920114091575330852761019822479962770536077357812446314136852910925252922251611126241820965287431734526824548856790334959869614382043974218152999238905640890876071228792700681355112475209835810744520585487303691726174537776751630111437206871568877336973364935679514121899296135560462622096083388982373108848323135050688402184810468784843611722448632196356191728925927008892354161065076253933204288658356805605272917496027122497084326223768467576910884879315367843171973540631186012824379797704954066758599826328944862275330119376938541856677194676240347336921677400398642438761594518290920000089061403651256232708507159302807932843846876992890500583713827276843303175402447336670847220657842755678438642591821362752194601526548981838920495600169948956925682137827189132042904626658932383379608917824373667065255633700635967508873092128431855280503128669028207427763506381983381249963830149122363141330411714118863840752013545998111432022720168751141582828713394146422261504258404722680529847883188312705274315515362, 793872730151928242485119889047413023696765582970265326355655302220504682558751838935890770645104184250098661897614859261294498373477129752754663505647571197983456177195351536576237141081550380658574376064512370492347150224437499568627637945600500783319477320529598418712835249616908730799138700275567771270575038835017834294614373683878676687963200598933980127112374056623105859331132386469963118577757806901505207841862497951582998634173463394609320617389875589252019743425140052926692651616549941299923645689875590128786925315297890013761972544890669810960977918064264529875557825880142848715449316627736964121078767113278347228197898893136617155051864964321717006245296293591067457541282410968557350144096267325297576433601158416498084782326452469748518088219295002839562340417292844613458240305598022963068742562695378611910130247424832680841498493299764696395297077055553749321144595074177466179710704525952847038511261382367393768704538206486246645556543306029031364694982232933277251106034298742672237042651853697063414225850953885755631158829254788275800700045356426163344418269487048241578623707959479846619974704009111284776328087834944242156627638842937380497639011844920004995879503268226154424980124430187692527643649582932683722769285124332129338379639412135417138636861707276972206780929641140180309951463980593980717398218283558680156217330428032373035974809873263928899878247026446540015564719269397748131244995134044279446558124433254882569608948781495442957775940164935199363300338558501335158422765125209891010213866328905092004131422763423652829126160622952745349890446331991971347230455636132075124781494542581046729437951822718802960550664366632872338315763329260707190544070677497936976513987142102250643879471062800651918572890224172922929199918107926016344702671764283646413925344732665125677709063479650054372480794692507383046455815452388072819607912320964643618564678572037169165970900403638894554483416249357544233950330975497827844026839430926432299777955192277708174744361777747726084953761106817763377483752284050445000206400617740793986021253845113707138298357440046345709452672541033177823092352413476985132707541001960547474541492615663979221411012597283663621121842456935453576793612286648745603255843363006918952252649681179656434805301466185046478205794661862898211645463013267140453603269953686442618911010649995182708226646094309556363627036729266015804173779098533732174605390073016578509042371906498821928110662313210505467683306219452689095060475165406134261635024126438924061893471306817564300700517150989029475740493878181273826179444682867903495777943366561153155680269177446634398101359326945478722745828073358138590835186253913953294133781], 'aut_phi_ratio': 120.0, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [2, 2, 2, 1], [2, 30, 1, 2], [2, 30, 2, 1], [2, 40, 2, 1], [2, 60, 2, 1], [2, 100, 2, 2], [2, 120, 8, 1], [2, 200, 2, 1], [2, 225, 1, 2], [2, 225, 2, 1], [2, 450, 2, 1], [2, 600, 2, 1], [3, 40, 1, 1], [3, 400, 1, 1], [4, 40, 2, 1], [4, 120, 2, 2], [4, 600, 2, 3], [4, 900, 2, 2], [4, 1200, 2, 1], [4, 1800, 2, 3], [4, 1800, 8, 1], [4, 2400, 4, 1], [5, 48, 1, 1], [5, 576, 1, 1], [6, 40, 1, 1], [6, 40, 2, 1], [6, 80, 2, 2], [6, 400, 1, 1], [6, 400, 2, 5], [6, 600, 1, 2], [6, 600, 2, 1], [6, 800, 2, 4], [6, 1200, 2, 2], [6, 1600, 2, 1], [6, 2400, 8, 1], [8, 7200, 4, 1], [10, 48, 1, 1], [10, 48, 2, 1], [10, 96, 2, 1], [10, 576, 1, 1], [10, 576, 2, 1], [10, 576, 4, 1], [10, 720, 1, 2], [10, 720, 2, 1], [10, 960, 2, 1], [10, 1440, 2, 1], [10, 2880, 8, 1], [12, 80, 2, 1], [12, 800, 2, 1], [12, 1200, 2, 3], [12, 1600, 2, 1], [12, 2400, 2, 3], [12, 4800, 4, 1], [15, 960, 1, 1], [20, 960, 2, 1], [20, 2880, 2, 2], [30, 960, 1, 1], [30, 960, 2, 1], [30, 1920, 2, 2], [60, 1920, 2, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2^6.C_2^2.A_5^2.D_4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '128.1578', 'autcent_hash': 1578, 'autcent_nilpotent': True, 'autcent_order': 128, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3\\wr C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 120, 'autcentquo_group': '57600.l', 'autcentquo_hash': 3328040073188890159, 'autcentquo_nilpotent': False, 'autcentquo_order': 57600, 'autcentquo_solvable': False, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'S_5^2:C_2^2', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 2, 2], [2, 30, 4], [2, 40, 2], [2, 60, 2], [2, 100, 4], [2, 120, 8], [2, 200, 2], [2, 225, 4], [2, 450, 2], [2, 600, 2], [3, 40, 1], [3, 400, 1], [4, 40, 2], [4, 120, 4], [4, 600, 6], [4, 900, 4], [4, 1200, 2], [4, 1800, 14], [4, 2400, 4], [5, 48, 1], [5, 576, 1], [6, 40, 3], [6, 80, 4], [6, 400, 11], [6, 600, 4], [6, 800, 8], [6, 1200, 4], [6, 1600, 2], [6, 2400, 8], [8, 7200, 4], [10, 48, 3], [10, 96, 2], [10, 576, 7], [10, 720, 4], [10, 960, 2], [10, 1440, 2], [10, 2880, 8], [12, 80, 2], [12, 800, 2], [12, 1200, 6], [12, 1600, 2], [12, 2400, 6], [12, 4800, 4], [15, 960, 1], [20, 960, 2], [20, 2880, 4], [30, 960, 3], [30, 1920, 4], [60, 1920, 2]], 'center_label': '4.2', 'center_order': 4, 'central_product': None, 'central_quotient': '57600.l', 'commutator_count': 1, 'commutator_label': '14400.ca', 'complements_known': False, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '60.5', '60.5'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 67, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': None, 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 1, 2], [2, 30, 1, 4], [2, 40, 1, 2], [2, 60, 1, 2], [2, 100, 1, 4], [2, 120, 1, 8], [2, 200, 1, 2], [2, 225, 1, 4], [2, 450, 1, 2], [2, 600, 1, 2], [3, 40, 1, 1], [3, 400, 1, 1], [4, 40, 1, 2], [4, 120, 1, 4], [4, 600, 1, 6], [4, 900, 1, 4], [4, 1200, 1, 2], [4, 1800, 1, 14], [4, 2400, 1, 4], [5, 48, 1, 1], [5, 576, 1, 1], [6, 40, 1, 3], [6, 80, 1, 4], [6, 400, 1, 11], [6, 600, 1, 4], [6, 800, 1, 8], [6, 1200, 1, 4], [6, 1600, 1, 2], [6, 2400, 1, 8], [8, 7200, 1, 4], [10, 48, 1, 3], [10, 96, 1, 2], [10, 576, 1, 7], [10, 720, 1, 4], [10, 960, 1, 2], [10, 1440, 1, 2], [10, 2880, 1, 8], [12, 80, 1, 2], [12, 800, 1, 2], [12, 1200, 1, 6], [12, 1600, 1, 2], [12, 2400, 1, 6], [12, 4800, 1, 4], [15, 960, 1, 1], [20, 960, 1, 2], [20, 2880, 1, 4], [30, 960, 1, 3], [30, 1920, 1, 4], [60, 1920, 1, 2]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': None, 'exponent': 120, 'exponents_of_order': [10, 2, 2], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '115200.bv', 'hash': 2885533212428351551, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 120, 'inner_gen_orders': [12, 4, 10, 10, 12], 'inner_gens': [[8213651349126, 4311493406928, 5862225196926, 5868782075521, 32619732054], [10841447595000, 8133447536334, 8475015996846, 8303652846721, 9161475684774], [11017994848566, 8300633327694, 8220160972926, 8233239173041, 2746689972168], [6827733158406, 4224888501534, 4561148027646, 4552432340401, 11859245803848], [5604932067960, 10918936264608, 10929394027566, 5530752062641, 1439044594248]], 'inner_hash': 3328040073188890159, 'inner_nilpotent': False, 'inner_order': 57600, 'inner_split': None, 'inner_tex': 'S_5^2:C_2^2', 'inner_used': [1, 2, 3], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16], [2, 12], [8, 16], [10, 16], [12, 8], [16, 20], [20, 4], [24, 2], [25, 16], [32, 12], [36, 16], [40, 16], [48, 8], [50, 12], [60, 8], [80, 4], [96, 2], [120, 2]], 'label': '230400.co', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': '(C2*S5^2).C2^3', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [1, 3, 0, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 27, 0, 0, 35, 0, 15, 1], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 89, 'number_characteristic_subgroups': 19, 'number_conjugacy_classes': 190, 'number_divisions': 190, 'number_normal_subgroups': 113, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 230400, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 5087], [3, 440], [4, 44960], [5, 624], [6, 40840], [8, 28800], [10, 35088], [12, 45760], [15, 960], [20, 13440], [30, 10560], [60, 3840]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2, 2, 2, 2], 'outer_gen_pows': [1428466596480, 1426590870174, 2044594021680, 11982356754480, 131331075120, 11982872084400, 11769603108480], 'outer_gens': [[11018514850680, 8146062006175, 10831863208320, 5862065171887, 2014325918935], [4311588153894, 8214405741361, 8308014624289, 8128219196448, 1838971330855], [6820508540568, 8222552432767, 6927336058015, 4224398578128, 9161069622055], [6926926769287, 5512844373534, 10744005933486, 10757018769841, 524554289689], [5517155710201, 5692100561569, 5694422227327, 4567375008000, 11944033078728], [6840350133127, 10924633042129, 8321698470961, 8303573335806, 132292707414], [7012634272680, 5619731362848, 4311573240240, 11005621764607, 118959770568]], 'outer_group': '128.1755', 'outer_hash': 1755, 'outer_nilpotent': True, 'outer_order': 128, 'outer_permdeg': 16, 'outer_perms': [14570092279818, 1336367651876, 8027649593058, 8031681278130, 18711782990350, 10555353003872, 11505577670619], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^4:D_4', 'pc_rank': None, 'perfect': False, 'permutation_degree': 16, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 12], [8, 16], [10, 16], [12, 8], [16, 20], [20, 4], [24, 2], [25, 16], [32, 12], [36, 16], [40, 16], [48, 8], [50, 12], [60, 8], [80, 4], [96, 2], [120, 2]], 'representations': {'Perm': {'d': 16, 'gens': [8213651349126, 8133447536334, 8220160972926, 4552432340401, 1439044594248]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 13, 'solvable': False, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 100, 'supersolvable': False, 'sylow_subgroups_known': False, 'tex_name': '(C_2\\times S_5^2).C_2^3', 'transitive_degree': 80, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 3], 'aut_gens': [[1, 2], [3, 2], [2, 3]], 'aut_group': '6.1', 'aut_hash': 1, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 6, 'aut_permdeg': 3, 'aut_perms': [1, 4], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1]], 'aut_supersolvable': True, 'aut_tex': 'S_3', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': True, 'direct_factorization': [['2.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '4.2', 'hash': 2, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 4]], 'label': '4.2', 'linC_count': 3, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 3, 'linQ_dim': 2, 'linQ_dim_count': 3, 'linR_count': 3, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2^2', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 4, 'number_divisions': 4, 'number_normal_subgroups': 5, 'number_subgroup_autclasses': 3, 'number_subgroup_classes': 5, 'number_subgroups': 5, 'old_label': None, 'order': 4, 'order_factorization_type': 2, 'order_stats': [[1, 1], [2, 3]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[3, 2], [2, 3]], 'outer_group': '6.1', 'outer_hash': 1, 'outer_nilpotent': False, 'outer_order': 6, 'outer_permdeg': 3, 'outer_perms': [1, 4], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 4, 'pgroup': 2, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 4]], 'representations': {'PC': {'code': 0, 'gens': [1, 2], 'pres': [2, -2, 2]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [14, 12]}, 'GLFp': {'d': 2, 'p': 3, 'gens': [55, 56]}, 'Perm': {'d': 4, 'gens': [6, 1]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^2', 'transitive_degree': 4, 'wreath_data': None, 'wreath_product': False}