-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'ambient': '1984.320', 'ambient_counter': 320, 'ambient_order': 1984, 'ambient_tex': '(C_2\\times C_{248}):C_4', 'central': False, 'central_factor': False, 'centralizer_order': 992, 'characteristic': True, 'core_order': 4, 'counter': 82, 'cyclic': True, 'direct': False, 'hall': 0, 'label': '1984.320.496.g1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': True, 'old_label': '496.g1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '496.13', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 13, 'quotient_metabelian': True, 'quotient_nilpotent': False, 'quotient_order': 496, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'D_{62}:C_4', 'simple': False, 'solvable': True, 'special_labels': [], 'split': False, 'standard_generators': False, 'stem': False, 'subgroup': '4.1', 'subgroup_hash': 1, 'subgroup_order': 4, 'subgroup_tex': 'C_4', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1984.320', 'aut_centralizer_order': 119040, 'aut_label': '496.g1', 'aut_quo_index': 1, 'aut_stab_index': 1, 'aut_weyl_group': '2.1', 'aut_weyl_index': 119040, 'centralizer': '2.c1.a1', 'complements': [], 'conjugacy_class_count': 1, 'contained_in': ['16.g1.a1', '248.c1.a1', '248.e1.a1', '248.f1.a1', '248.j1.a1', '248.j1.b1'], 'contains': ['992.a1.a1'], 'core': '496.g1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [6659, 2756, 6142, 3848, 5710, 6037, 5920, 4257], 'generators': [1018], 'label': '1984.320.496.g1.a1', 'mobius_quo': 0, 'mobius_sub': 0, 'normal_closure': '496.g1.a1', 'normal_contained_in': ['16.g1.a1', '248.e1.a1', '248.f1.a1', '248.c1.a1'], 'normal_contains': ['992.a1.a1'], 'normalizer': '1.a1.a1', 'old_label': '496.g1.a1', 'projective_image': '992.37', 'quotient_action_image': '2.1', 'quotient_action_kernel': '248.11', 'quotient_action_kernel_order': 248, 'quotient_fusion': None, 'short_label': '496.g1.a1', 'subgroup_fusion': None, 'weyl_group': '2.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '4.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 1, 'aut_exponent': 2, 'aut_gen_orders': [2], 'aut_gens': [[1], [3]], 'aut_group': '2.1', 'aut_hash': 1, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 2, 'aut_permdeg': 2, 'aut_perms': [1], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 1, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1], [4, 1, 2]], 'center_label': '4.1', 'center_order': 4, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 1, 2, 1]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 4, 'exponents_of_order': [2], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [[1, 0, 2]], 'familial': True, 'frattini_label': '2.1', 'frattini_quotient': '2.1', 'hash': 1, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 2, 'irrQ_dim': 2, 'irrR_degree': 2, 'irrep_stats': [[1, 4]], 'label': '4.1', 'linC_count': 2, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 1, 'linQ_dim': 2, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C4', 'ngens': 1, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 3, 'number_characteristic_subgroups': 3, 'number_conjugacy_classes': 4, 'number_divisions': 3, 'number_normal_subgroups': 3, 'number_subgroup_autclasses': 3, 'number_subgroup_classes': 3, 'number_subgroups': 3, 'old_label': None, 'order': 4, 'order_factorization_type': 2, 'order_stats': [[1, 1], [2, 1], [4, 2]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[3]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 4, 'pgroup': 2, 'primary_abelian_invariants': [4], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1]], 'representations': {'PC': {'code': 5, 'gens': [1], 'pres': [2, -2, -2, 4]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [46]}, 'Lie': [{'d': 2, 'q': 3, 'gens': [56, 15], 'family': 'CSOPlus'}], 'GLFp': {'d': 2, 'p': 3, 'gens': [21]}, 'Perm': {'d': 4, 'gens': [22, 7]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': False, 'smith_abelian_invariants': [4], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_4', 'transitive_degree': 4, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 1860, 'aut_gen_orders': [30, 6, 4, 60, 12, 60, 30, 10], 'aut_gens': [[1, 4, 32], [329, 12, 1888], [1691, 30, 816], [209, 1020, 1968], [1403, 12, 1712], [1147, 30, 176], [337, 14, 1696], [945, 4, 1632], [1801, 28, 736]], 'aut_group': None, 'aut_hash': 1488748237624605799, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 238080, 'aut_permdeg': 512, 'aut_perms': [197419297812033620959882889042778106061375205065879722138585967973639490651195455174413760104997780614999580564004668536053796844698605832103025274851577948712398194785182944371650504426203910013419076580894080972818448730489653529348933646006536071086744609160495395289052870151001481160686489969236487649510252489709213860486904256921224972183360833239297524162620833438841093978708534334741754559014895435765850505914622162268507818483236663902702315544788801838407862864957684016148477542743559523446897188887443493943295259170178798138043890600824311500051223480237626894747082229115522701703101121089404104686272899876282536259394658960325988650141914021444801441029499943673435112394410509428869666159876608943797733326469452721244222445303755416766245537410162108772397355483538933414604753681392704920418219175614120402565790115238246727658581181029739599114631420476127681803697541899436109445975217451166168562055171136354514294883008766732461227294667135612777328661273604406262065209719669192354309915297635326586817294428366414684239673176258792879232947645154699056971516178521316648537902954717214611766447342182088153229995077233468535746582552312907, 296266099719458625728100047670773737489055164013595014925994993433900226104258932422259525568267796338744795769240096008471648163608457232903546938685142123504875898336803527859344741480003496080270811467687157686568297980880051226007450165657651077292438322583727010117129975062061281166859655029387373957607629346578437594278631911398578271621000477003648030481285823768098208979687611746210406464299301664894119378970616885267882868771169203531330761946379957615999124758294222202200497572718763272650395618300654327575948687288656815409517291589956876821434958978403832720239049999842530142661776293281214768044165823845773772653020474919315243569081062648655703491306161179385520194294092034990706072539598051954052216557353671933748409524486139843975616954409343445969622048714578983296508266319996226003140853342214916835787783968112311639738892194494421215551932481343184490503803603163678726817580335613459250123590763079374523413610339187878629740884374003946886810547877369844269010430683945494905698151425080964387087390956537050132269705589560991365021120196991935498715775979589998219232279425724608647491473119769432703619899505406340455806187884878067, 139291343341207746119340865497450691929230589849957576360849788086203586899270883606460255845664989290394722285421464927684641248694465274003176305783130923118061710568793881996666835936038493981761650283419502661983813446599407014096037179523163785178426890560656348674371179032080413057007039145819129528130191874028931393657949614829843083147880885305666062408038107620081666015993711368705695172144668485682079354288870634918113283142015207891189295014801148839484562015069904739726822598626097884963168711037444116534508337004170845460001837594881106527089518609177937565875539886962413961809274189522831347252209915471172761890867942043878503440533522198899581367671512603457070882744378636042511403444293293004249409851576606351700121100468682533216446243972295382828980357065760954438042962285332092097190261392009463945358041890596864588888404695135119003727547120487965189221373381017192273487717148741847686324362843389189503052302979924072833780931631123356351665188629438744353257798051218740910910113086267640073963091336379391766622578689770056958093106647211075746354489776672470531223489329643951329049525294176298752649346259642434205710136587881083, 343239877333733360912606215350100808759758690847473350040460320327510198286184307853118223681656450920936994992329141065825469304272030308737791936988099393788143908577427693324727367327626818451386602524894599802343128845695382908131972907995268633271055531796749873674176230386928912754224594515718136126461607174428746569802030588595016922406632027896708070317331375631483036164489291478869845993394183443452707642812727892439204774093738714062025823035950996209538991479415017592832332786718185323232846710288772760388964706229598390590293812784064505137463887855933340042920924224390146327113943406409972729628286539187098396074330870690536515252216784838817653760968966142767173298625465473690825361999549457713784351056710816343991699918435861930078615705781092144238133878322623598813075322755124932869382728630977210058179682588042335371594562138389233776636483250018075964689135653638918543668046309335218253795204703504145286226892628626758390458950510308608014129292343914223639146895863486885055798076747657605545740180763203471115063591358288148320055713066902971120050031061773721788539417769329611813916599665639508379967419201742630539776964033754622, 287916451002456052782085051402656744371558770436391916937045067164411658826228835226186201427193335422625417284030027792274661084385273271803409461762400849663411392699403677773026938302753645490192383539139375776362231906721725279164338281822606583010292200545024093233574978278425937621222869307710862061610580415275810470905384768520466073705212030876378046103247390607293777720343182829561337829089674619529193688070591987010151780821037156142300768156460568537706080708822056682021225991682453245700684920606552338058699998030748752753380968562395249524293423925040110351779682186767057924048792773064813714393318555700809976017355992067264895736713239917644229287407505553459749204575985520391914428068488498477090214762980155039169127328782263222684107171286726119439876417083973023762336954372940342334349429449938584857963474106571823733194086782304293877832246962811650503117116597076428621576679409183340781954323843663208930912145486805541694237438560452937772596600880053727169513189908963068227459805147209119243088707882438249608346051181667117878380347398977075183642453236516978414954049230744707207244275088971764219996812982495236815898298712531340, 256600600179570476521283688462413130288853941597502123776554784403741210628268971376968101897015793067376577363377389317625881343062327776960035130025194909086570458192820251299889094498624521651238797693373121219919200816310475873493540580266538998511770687717523029491811570417409529135533024859894031024321471635952139242005102249907342236309285878948512540369143888814627252336221628430830979749649021759523016687200252900228801221148791448394177252381094662909781745530438307261944982416129012240180119547240764177839209911644567042235947137516326028143578743067336180352266011486965238805501394102260129502912835271296020766643270807941927091033543427341606440168641344119380617447408071758805692275754750336642788482270160564198313180252668515199381049546573106919203011678340039503917609034553817095159921978404797716972726679151644850472425851769425074453372166467821806292667034852977456365897997759019372666517333299652820532816929452110323293889010766898953741944453993515942073536624720306379143852987996780629792764544886717421000487108978491797654263528598522106825399207076620180807748231367689750702138232964148802471907258807495230813271049518840566, 237050164353092894551297705363172117134980451104607204154919055261852692865827447874275192312400617266817907614680059732250519474700474686780626699859972267782168340352881194596246347942240126935332268773565627709504840559910066773297030756621537894619930115748049301745600273514764661448131842690114266928139877288260312023027022256776667526523761060266733506723564174042996017741834190287630485699476710782681420294586928659228544045034689868422587477663385368247335522050713426887949534102035674890651829065838690190179473041098876052826964206939661718363382516300495054126607886566473853711262025371345449654991503901026533397963944053263232199651479792082829677720302101992789943615926940438306535153364383883174224481489771915116744543957338848015727776562428984735970758874081597248845227480508224097030898849490035675687600173800070460015071859945180643084451900682854053698726136071258975753712656732349811448658045008390690819391167169483063857690160017983825642588713190376545025901044898826531231260334284196035830351147319398782214350568850599242999593315858788527340904760122567709814177983177388331985419350679622368356221070126308635819085630867183052, 255898808818412245215054940040129624932427716234111150810564706546259081753909183786091604343130202251736934165318678164207867141599737076530246923987835014118483570413051352102223328849649771112470419225414368814839094656007229390916344734689921045750987984309462563742259937658961640894116725973381834673938995639451510917735057050700744831623602195227370303028544698296803103508534656452638860944885996016199646112119622647214314675914417993780397369770421529971776837886751917709633867914417271474528296350873261612362417342097611347098697604602062238863207082274469604934632881138347140314827422613100869831222830086679807041970600659408940349151572965407325051808139750194765024754137704511832229223109148001645888786180233571213204516147000710139070349091124819070039815386670489743539879862255425019029689121248026305867784037115531750215349465603616049821088115171183394297950727703424806254740233180324071402310464194196262508852156795454943793063472590000062496742214166213600101880796488549143590215354363012289857989244722403872000722151781422587996171722919341981921972033092315180925978230655388318417264569654041716474305279147477143459730051964980617], 'aut_phi_ratio': 248.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 3], [4, 1, 2, 1], [4, 2, 1, 3], [4, 124, 4, 1], [8, 4, 4, 1], [8, 124, 4, 1], [31, 2, 15, 1], [62, 2, 15, 1], [62, 2, 30, 1], [62, 4, 15, 2], [124, 2, 30, 2], [124, 4, 15, 2], [248, 4, 120, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{62}.C_{30}.C_2^6.C_2', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '16.11', 'autcent_hash': 11, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2\\times D_4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 930, 'autcentquo_group': None, 'autcentquo_hash': 3780555722307572373, 'autcentquo_nilpotent': False, 'autcentquo_order': 14880, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_{31}.C_{30}.C_2^4', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 3], [4, 1, 2], [4, 2, 3], [4, 124, 4], [8, 4, 4], [8, 124, 4], [31, 2, 15], [62, 2, 45], [62, 4, 30], [124, 2, 60], [124, 4, 30], [248, 4, 120]], 'center_label': '4.1', 'center_order': 4, 'central_product': False, 'central_quotient': '496.18', 'commutator_count': 1, 'commutator_label': '124.4', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '31.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 320, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 3], [4, 1, 2, 1], [4, 2, 1, 3], [4, 124, 2, 2], [8, 4, 2, 2], [8, 124, 2, 2], [31, 2, 15, 1], [62, 2, 15, 1], [62, 2, 30, 1], [62, 4, 15, 2], [124, 2, 30, 2], [124, 4, 15, 2], [248, 4, 60, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 6, 'exponent': 248, 'exponents_of_order': [6, 1], 'factors_of_aut_order': [2, 3, 5, 31], 'factors_of_order': [2, 31], 'faithful_reps': [[4, 0, 60]], 'familial': False, 'frattini_label': '16.10', 'frattini_quotient': '124.3', 'hash': 320, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 124, 'inner_gen_orders': [4, 2, 62], 'inner_gens': [[1, 1012, 1968], [1009, 4, 32], [81, 4, 32]], 'inner_hash': 18, 'inner_nilpotent': False, 'inner_order': 496, 'inner_split': False, 'inner_tex': 'C_{62}.D_4', 'inner_used': [1, 2, 3], 'irrC_degree': 4, 'irrQ_degree': 240, 'irrQ_dim': 240, 'irrR_degree': 8, 'irrep_stats': [[1, 16], [2, 244], [4, 62]], 'label': '1984.320', 'linC_count': 60, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 38, 'linQ_degree_count': 4, 'linQ_dim': 38, 'linQ_dim_count': 2, 'linR_count': 30, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': '(C2*C248):C4', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 22, 'number_characteristic_subgroups': 39, 'number_conjugacy_classes': 322, 'number_divisions': 26, 'number_normal_subgroups': 47, 'number_subgroup_autclasses': 76, 'number_subgroup_classes': 90, 'number_subgroups': 1068, 'old_label': None, 'order': 1984, 'order_factorization_type': 51, 'order_stats': [[1, 1], [2, 7], [4, 504], [8, 512], [31, 30], [62, 210], [124, 240], [248, 480]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 30, 'outer_gen_orders': [2, 2, 2, 2, 30], 'outer_gen_pows': [0, 0, 1008, 0, 0], 'outer_gens': [[17, 4, 1952], [3, 4, 1968], [9, 4, 1952], [1, 22, 1952], [17, 12, 544]], 'outer_group': '480.1213', 'outer_hash': 1213, 'outer_nilpotent': True, 'outer_order': 480, 'outer_permdeg': 18, 'outer_perms': [362880, 355687428096000, 1307674368000, 6227020800, 39922593], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^4\\times C_{30}', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 47, 'pgroup': 0, 'primary_abelian_invariants': [4, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 10], [8, 1], [30, 4], [60, 6], [240, 1]], 'representations': {'PC': {'code': 22026453158040928671374056942482867030000029, 'gens': [1, 3, 6], 'pres': [7, -2, -2, -2, -2, -2, 2, -31, 14, 21254, 219, 58, 80, 82661, 124, 94086]}, 'Perm': {'d': 47, 'gens': [5877986410790946074842168659865725843463839765351872681647, 11614361037669253074836479625972997686672840636497920000000, 17244220622409087225215154609686307171328149505966080000000, 22494898219429864126965915525151759346482568044216320000000, 27534920775933028697185619692206550728033255964016640000000, 22513506124535629832015374686560547139931076223303680000000, 282958192612797845278006145363293]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [4, 4], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': '(C_2\\times C_{248}):C_4', 'transitive_degree': 496, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 930, 'aut_gen_orders': [2, 2, 2, 2, 30, 31], 'aut_gens': [[1, 2, 4], [3, 2, 244], [249, 2, 244], [1, 2, 246], [1, 2, 492], [1, 2, 292], [17, 2, 4]], 'aut_group': None, 'aut_hash': 3780555722307572373, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 14880, 'aut_permdeg': 128, 'aut_perms': [212535904754050021820250728584129068943161719065482573873866470722528519958491719463878853322674920743194767812104282494605090537557319519720400579640214601722109973143670452249743681684573044439670192523267879478895, 355254766992662807715426830267175328955586526556413547361110259553894726488363833825724495009774220029359651513261996301745478396336169801140823135524421224606599696726175501694650376002712729026603831066994194687135, 212535904754050021820250728584129068943161719065482573873866470722528519958491719463878853322674920743194767812104283521339805106405187754530433884457440466756425470029602464551991586964916228191692913035267879478439, 355254766992662807715426830267175328955586526556413547361110259553894726488363833825724495009774220029359651513261997670725097821466660780887534211356433667131112230677213171215375660203013492352665571098994194687501, 370726620302777891308616311665875704099753639955138162672579061199498266922548382968355224195857080413706559082092938136184961795059020949753451484297680749424521407215678842461417844020418031558352452414888790041486, 3036571536991761402025023565628831166190670615520904684519790561697467652582233828334907358461356931877577760538021196445998170060964578944183659705512819823311135946413904112267983419132453658879119764938441879777], 'aut_phi_ratio': 62.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 62, 2, 1], [4, 2, 2, 1], [4, 62, 2, 1], [31, 2, 15, 1], [62, 2, 15, 3], [124, 2, 60, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{31}.C_{30}.C_2^4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '16.14', 'autcent_hash': 14, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 930, 'autcentquo_group': '930.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 930, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{31}', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 62, 2], [4, 2, 2], [4, 62, 2], [31, 2, 15], [62, 2, 45], [124, 2, 60]], 'center_label': '4.2', 'center_order': 4, 'central_product': False, 'central_quotient': '124.3', 'commutator_count': 1, 'commutator_label': '62.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '31.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 13, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 62, 1, 2], [4, 2, 2, 1], [4, 62, 2, 1], [31, 2, 15, 1], [62, 2, 15, 3], [124, 2, 60, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 6, 'exponent': 124, 'exponents_of_order': [4, 1], 'factors_of_aut_order': [2, 3, 5, 31], 'factors_of_order': [2, 31], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '124.3', 'hash': 13, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 62, 'inner_gen_orders': [2, 1, 62], 'inner_gens': [[1, 2, 246], [1, 2, 4], [259, 2, 4]], 'inner_hash': 3, 'inner_nilpotent': False, 'inner_order': 124, 'inner_split': True, 'inner_tex': 'D_{62}', 'inner_used': [1, 3], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 8], [2, 122]], 'label': '496.13', 'linC_count': 240, 'linC_degree': 3, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 34, 'linQ_degree_count': 10, 'linQ_dim': 34, 'linQ_dim_count': 10, 'linR_count': 90, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'D62:C4', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 12, 'number_characteristic_subgroups': 15, 'number_conjugacy_classes': 130, 'number_divisions': 13, 'number_normal_subgroups': 17, 'number_subgroup_autclasses': 30, 'number_subgroup_classes': 34, 'number_subgroups': 496, 'old_label': None, 'order': 496, 'order_factorization_type': 31, 'order_stats': [[1, 1], [2, 127], [4, 128], [31, 30], [62, 90], [124, 120]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 30, 'outer_gen_orders': [2, 2, 30], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[3, 2, 244], [249, 2, 244], [3, 2, 44]], 'outer_group': '120.47', 'outer_hash': 47, 'outer_nilpotent': True, 'outer_order': 120, 'outer_permdeg': 14, 'outer_perms': [362880, 6227020800, 39922593], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times C_{30}', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 39, 'pgroup': 0, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 4], [30, 2], [60, 3]], 'representations': {'PC': {'code': 700267875683481190800029, 'gens': [1, 2, 3], 'pres': [5, -2, -2, 2, -2, -31, 3692, 42, 9763, 58, 12004]}, 'GLZN': {'d': 2, 'p': 124, 'gens': [120117375, 1907121, 2871531, 234516675, 1914313]}, 'Perm': {'d': 39, 'gens': [13774094930742041323710367962159238592682092, 12460, 5329, 18619, 550570807328085194407427960024392768384990080]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'D_{62}:C_4', 'transitive_degree': 248, 'wreath_data': None, 'wreath_product': False}